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Taking into account ‘hydrodynamical damping’ due to irreversible processes that occur within the system
and neutral drag due to dust-neutral collision, a Burgers’ equation with a linear damping term is derived for
1D nonlinear longitudinal dust lattice wave (LDLW) in homogeneous strongly coupled complex (dusty) plasma.
The ‘hydrodynamical damping’ generated dissipative effect causes generation of shock wave in dusty plasma
crystal, whereas the neutral drag induced dissipative effect causes the decay of the shock intensity with time.
The width of the observed compressive shock increases (decreases) with the increase of the shielding parameter
K (characteristic length L). Its implication in glow-discharge plasma are briefly discussed.
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A complex (dusty) plasma constitute ionized
gases containing charged particles of condensed mat-
ter. The system is classified as “strongly coupled”
or “weakly coupled” for ' > 1 or ' < 1, where
I [= (Q*/4meoATs) e *] and k(= A/Ap) are the
coupling and shielding parameters with dust charge @,
dust temperature Ty, interdust spacing A and Debye
length Ap. Complex (dusty) plasmas can spontaneously
form ordered crystalline structures when I' > T'.,. (crit-
ical value), so-called plasma crystal [1] that supports
variety of dust lattice wave modes such as longitudinal,
transverse and sloshing modes [2—9]. These wave
modes are the elastic deformations of the lattice.

The longitudinal dust lattice wave (LDLW) is a com-
pressional wave in atomic chain that propagates parallel
to the dust particle motion in the chain. As a matter
of fact, because of intrinsic nonlinearities of interatomic
interaction mechanisms or on-site substrate potentials
[10], LDLWs are known to be dominated by nonlinear
phenomena like dislocations in crystals, energy localiza-
tion, coherent signal transmission in electric lines, opti-
cal pulse propagation, charge and information transport
in bio-molecules and DNA strands, etc. [11]. The non-
linear phenomena such as formation of solitons, wave-
wave interactions were observed in laboratory experi-
ments [12-14] and the characteristics of these nonlinear
phenomena agreed with theoretical predictions [15—-17].

Another interesting nonlinear phenomena is the gen-
eration of shock. It was shown previously that weakly
coupled complex plasmas (gaseous phase) can sustain
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shock waves [18 —20]. Later, it was also shown that lon-
gitudinal dust acoustic wave also sustain shock waves in
strongly coupled quasi-crystal dusty plasma (1 < T' <
< I'.;), where the shock was generated due to charging-
delay induced anomalous dissipation [21]. Moreover,
recent experimental observations [22, 23] revealed that
LDLW can sustain shock waves in dusty plasma crystal
(' > I'er). It is observed that strong shocks melt or
even vaporize the solid and thereby produce phase tran-
sitions [23]. However, the physics of formation of shock
in dusty plasma crystal is not well investigated as in case
of weakly coupled dusty plasma.

In this letter a theoretical investigation for the gener-
ation of shock wave in dusty plasma crystal is reported.
It is shown that the dissipation arises due to ‘hydro-
dynamical damping’ that takes place within the system
generates the shock wave in dusty plasma crystals.

The complex (dusty) plasma consists of electrons,
ions and the dust grains with mass m and negative
charge @ (both are assumed to be constant for simplic-
ity). The repulsive inter dust potential is shielded by
the electron-ion plasma, characterized by Debye length
Ap [22]. A simplified 1D particle string model [15] and
a weak correlation of fluctuations on the neighbour par-
ticles are assumed. The interaction potential between
each particle is the Yukawa potential and the Debye-
Huckel energy of this electrostatic coupling between j-th
and j £ 1-th particle of the string is given by

Q? exp (_| Tj — Tjt1 |>

47l'60 | Tj — Tjt1 | /\D

Wjj+1 =

1)
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where z; and z+; are the coordinates of the particles in
the string. The corresponding inter particle force acting
on the j-th particle is F}j j11 = —0Wj j11/0z; and the
corresponding Yukawa force on the j-th particle in the

string is given by
Fy = Fjj1+ Fjj11 = F(z;-) — F(zj4),
zj- =|zj—zj—1|, Tt =T —zj |,

(2)

where

Q2 Zjq 1 1
F(z;y)= —— _IE ) = .
(w'H_) 47?60(1:j+ P AD Tt + AD

Introducing the displacement from the steady state as
rj(= z; +jA) and expanding F(z;_), F(z;) in Taylor
series about A in powers of r;, the Yukawa force can be
rewritten as

C2
Fy = mﬁ [(er —2rj 4+ 1)+
A 2 2
t 5on ((rj=rjm1)? = (rjpr —1)%) | +--» (4)
where
31+ 3k2+6 6
A:(n+n+n+) 5)

(K2 +2k+2)

and Cpr is the dust lattice speed. For nearest neighbour
approximation i.e. for k(= A/Ap) > 1, the dust lattice
speed can be approximated as [12, 15]

Q2efn

3~ —~—
DL ~
47T€0mh')\D

(K> +26+2). (6)
In solids, shocks are characterized by the damage they
inflict. An elastic shock is characterized by non damag-
ing stresses below the elastic limit. Therefore, ‘hydrody-
namical damping’ which is extensively used in elasticity
theory [24] is proposed for the dissipative mechanism in
dusty plasma crystal. This damping force due to finite
velocity of internal motions of the system, namely time
derivative of the relative displacement between dusts in
the chain can be expressed through the following discrete
relation

Faamp = mvg—_ [(rj41 — 1) — (rj —rj-1)] =

dt

d
=mva [(rjy1 — 2r5 +75-1)], (7)
where v; is the damping frequency. Also it
is assumed that the ratio of the damping fre-
quency to dust lattice oscillation frequency

Wi (: \/Qze—n(ﬁz + 2Kk + 2)/47T60mli3A?b) is finite i.e.

va ~ O(wg) = :_i =g~ O(1) ®)

For simplicity, the external forces such as initial laser ex-
citation and / or the parabolic confinement forces which
are often arise in experiments [12, 13, 23] are neglected.
The damping due to neutral drag is considered under
the assumption that dust-neutral collision rate varag [25]
is low compared to w, i.e. Vgrag < wr. Thus, the equa-
tion of motion of the jth dust grain in the chain is given
by

d?r; dr;
m (W; + Vdragd_;) = Fy + Fdamp- (9)

Let us now consider the continuum approximation. As-
sume, as usual, that r; changes appreciably only on a
scale L (the typical scale length of the wave form that
can be the width of a pulse or the wavelength of a sinu-
soidal wave) much larger than the lattice spacing (inter
dust spacing) A. One may treat j as a quasi-continuous
variable (coordinate), then in the lowest approximation
O (A/L)?, the equation of motion (9) goes over into the
continuum equation

e dr
a2 " Varee gy =
o%r or 0%r o3r
_ 2 - 2
=CObr | g7 ~Ags 002 TR gz | (10

To derive the Burgers’ equation, the following stretched
coordinates are introduced

0
¢ =eL(z — Cprt), 7= €wrt, 6—2 =uCpr, (11)
where € is a small parameter that indicates the magni-
tude of the rate of change, L is a characteristic length
(length of typical wave form). Also for the consistent

perturbation, the following scaling for vg,ag is introduced

Vdr, _

Vdrag ™~ O(ez)wL = j)—zg = Vdrag ~ 0(62)' (12)
Finally, substituting equations (11) and (12) into equa-
tion (10), and keeping the terms O (€®), the follow-
ing (non-dimensional) Burgers’ equation with a linear
damping term is derived

du Ou 8%u

——au—+"/u:ua—£2,

or ot (13)

where

_K,CDLA AD _ Vdrag _17,1/92 AD 2
a="0" (L),7—2,u—2 )" (1)

The above relation (14) shows that the Burgers’ term
1 o 74 (other plasma parameters remain constant), the
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normalized damping frequency, whereas the damping
term y o Dgrag, the normalized neutral drag frequency.
Thus the Burgers’ term in equation (13) originates from
the ’hydrodynamical damping’ and the damping term in
the same equation originates due to neutral drag. Also
the presence of Burgers’ term in equation (13) implies
the possibility of existence of shock structure. Thus the
dissipative effect due to ’hydrodynamical damping’ is
responsible for the generation of shock wave in complex
(dusty) plasma.

The solution of the Burgers’ equation with a linear
damping term (Eq. (13)) is given as [26]:

u(§, 7)=V(r) [1 + tanh B(7)n(r)]; n(r)=¢€ + 6(7), (15)
where

do(r)

V(r)=Voe 7, dr

= Voae™ " (16)

are the shock amplitude, shock velocity and Vp = V(7 =
= 0) is the initial shock intensity. On the other hand the
shock width is proportional to

B(r) Voo

The solution (15) together with (16) shows that the shock
amplitude V (7) and shock velocity df/dr decreases ex-
ponentially with time 7. On the other hand shock width
B(7)~! behaves convesrely and hence the product of the
shock amplitude and shock width (V(7)3(7)~! = 2u/a
is time (7) independent) is constant as shock propagates
from upstream to downstream side.

To analyze the equation (15) numerically, the follow-
ing representative plasma parameters of glow-discharge
plasma are adopted [22]: A = 256um, Ap = 67um,
k= 3.8, Varag = 10571, a = 4.45pm, m = 5.57-10 B kg
and Q = 1.6 - 10*e. The dynamical behaviour of the
approximate solution (Eq.(15)) of the modified form of
Burgers’ equation (Eq.(13)) is shown in Fig.1. It is ob-
served that the shock amplitude V' (7) decays with time 7
and the damped shock moves with gradually diminishing
velocity. As a result, it will propagate a finite distance
D =~ aVy/~ before it dies out [t — oo]. The variations
of shock width with shielding parameter « for different
characteristic length L are plotted in Fig.2. This figure
shows that shock width increases with the increase of
shielding parameter k, whereas it decreases with the in-
crease of characteristic length L. This is happened due
to the fact that the nonlinear interactions between two
neighbouring dust grains in the chain increase with the
increase of k, whereas, these interactions decrease with
the increase of L.

L2 . (17)
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Fig.1. Monotonic shock structures of particle velocity u
with £ in complex plasma in presence of damping vy. The
plasma parameters are: L = 10Ap, Kk = 3.8, 73 = 1,
v = 0.086 and initial amplitude Vo =1
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Fig.2. Variations of shock width with shielding parameter
% in complex plasma for Vo = 1, 7 = 1, v = 0.086, and
vg=1

In conclusion, it is observed that the ‘hydrodynam-
ical damping’ in dusty plasma crystal may balance the
wave breaking nonlinearity and generates shock wave
in complex plasma. The observed shock is compressive
in nature and shock width increases (decreases) with
the increase of k(L). The neutral drag due to dust-
neutral collision does not contribute to shock wave for-
mation, but plays a predominant role in the life and
death of shock structures. For the above specified glow-
discharge plasma parameters, before the death of the
observed shock, the shock moves a sufficiently long dis-
tance D = 450pm (> Ap = 67pm) to be observed in the
laboratory.
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