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The Andreev reflection probability for a ferromagnet/isolator/superconductor (FIS) contact at the arbi-
trary spin-dependent amplitudes of the electron waves transmitted through and reflected from the potential
barrier is found. It is shown that Andreev reflection probabilities of electron and hole excitations in the FIS
contact are different. The energy levels of Andreev bound states are found. The ballistic conductance of the

point FIS contact is calculated.
PACS: 74.50.+r, 74.80.—g, 75.30.Et

One of the manifestations of the exchange field in a
ferromagnetic metal (F) is the presence of electron spin
subbands with different values of Fermi momenta: p for
the subband with spin up and p | for the subband with
spin down. As a consequence, for layered F /S structures
(S stands for superconductor) the spatial dependence of
the anomalous Green’s function (GF) in a ferromagnet
has an oscillatory character. One of the impressive man-
ifestations of such oscillations and related phase shifts is
a recent observation of spontaneous zero-field supercur-
rents at temperature lower than the junction 0 — 7 tran-
sition temperature in superconducting networks of SF'S
junctions with weakly ferromagnetic barriers [1]. The
influence of the oscillatory character of the anomalous
GF in a ferromagnet on the properties of various hy-
brid F/S structures is studied well enough (see reviews
[2-4]).

Another consequence is the suppression of Andreev
reflection [5]. When a polarized electron from the sub-
band with, for example, spin up gets into a superconduc-
tor, the reflected hole moves into the subband with spin
down. Consequently, the efficiency of Andreev reflection
is determined by the number of conducting channels in a
subband with a smaller value of the Fermi momentum.
As a result, the subgap conductance of an F/S contact
decreases with the increase of the polarization of a fer-
romagnet [6].

Effects of spin filtering [7—9] and spin mixing [10]
are manifested in the dependence of moduli and phase
shifts of the amplitudes of electron states on the Fermi
surface reflected from r, (ro = Raexp(ifh); Ry =
=1-— D,) and transmitted through a potential barrier
dy (do = v/Dqexp(i02)) on a (a =1,/ is the spin in-
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dex). These effects are the consequence of the presence
of the exchange field in a ferromagnet as well.

The possibility to study the influence of the spin mix-
ing effect on the I—V characteristics of superconducting
weak links containing a magnetically active interface ap-
peared after the boundary conditions (BCs) for the qua-
siclassical GF were obtained.

In paper [11], BCs for the quasiclassical GF for two
metals in contact via a magnetically active interface in
terms of an interface scattering matrix were derived.
These equations were solved for a junction in the tunnel-
ing limit [11] and for a contact of a superconductor with
a ferromagnetic insulator [12]. In paper [10], BCs for
the retarded and advanced quasiclassical GF's were ob-
tained in terms of Riccati amplitudes [13, 14]. In paper
[15], BCs in terms of Riccati amplitudes were obtained
for the nonequilibrium quasiclassical GF.

The equations, obtained in papers [10] and [15],
were solved for magnetically active interfaces with finite
transmission (for SFS [8, 10], for NFS [15] (N stands for
normal metal), for S-FIF-S [16]). These solutions show
that Andreev bound states appear within the supercon-
ducting gap [8, 10, 15], and the 0 — 7 transition in the
SF'S junction is possible [8, 10].

In papers [9] and [17], quasiclassical equations of su-
perconductivity for metals with a spin-split conduction
band were derived and BCs for the temperature quasi-
classical GF for the F/S interface were obtained. The
model interface was the same as in [11, 18].

The aim of this work is to study the influence of
spin-dependent phases of the amplitudes of the electron
states reflected from and transmitted through a poten-
tial barrier on Andreev reflection in a point FIS contact.

Calculations are carried out by the method of qua-
siclassical GFs with BCs for GFs obtained in papers
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[9, 17]. Below the dependence of the Andreev reflection
probability on spin-dependent phase shifts ¢ and 67,
will be found and the results of the numerical calculation
of the dependence Grrs(V) for a rectangular potential
barrier and ferromagnets with high polarization will be
discussed.

1. Differential conductance of a point FIS con-
tact. In various hybrid F/S structures Andreev reflec-
tion is modified. The reflected hole has some parame-
ters (for example, the velocity modulus and phase shift)
different from those of the incident electron because it
moves in a subband with the opposite spin. Such spin-
discriminating processes due to the exchange field in
a ferromagnet lead to the formation of Andreev bound
states inside the gap [8, 10].

The enegy of Andreev bound states depends on the
spin index [8, 10]. As a result, the spectral density of
condauctance Grrs of the FIS contact at zero voltage
is no longer a symmetrical function of energy €. The
condition of the time reversal invariance has the form
Grrs(e,a) = Grrs(—e, —a). The generalization of the
conductance Grrs(V) [9, 19] for this case results in the
following expression for Grrs(V):

62A dp” N
32027 24 / )2 / dex

[1 - .@?ngf%z

Gris(V) =

1
x -
coth? (==2¥%=)

+TA TR - TA TR (1)

A ARA
— 0,729, 7Tz +

In Eq. (1), A is the contact area; 7, is the Pauli matrix;
p| is the momentum in the contact plane; (s, T,) and
(9a, T,) are quasiclassical retarded (R) and advanced
(A) GFs symmetric and antisymmetric with respect to
the projection of the momentum P on the Fermi surface
on the axis z, respectively [9]. Calculations in Eq. (1)
are to be carried out on the boundary of any contacting
metal.

2. Finding GF's and conductance. Let us assume
that the barrier with the width d is located in the region
a <z <b(d=>b- a), the superconductor occupies the
region £ > b, and the ferromagnet occupies the region
z < a. To find GFs, for each metal one has to solve
quasiclassical equations of superconductivity for metals
with a spin-split conductivity band simultaneously with
their BCs derived in paper [9]:

0 i1,

0 .,
Slgn(pz)(9 g+ ”a( g+90, ") +[K,g- =0,

IA{ = —iﬁ;%(iEn’iA’z +A-— 2) - "'(f):c - %zf)z%z)/z
[a,b]— = ab — ba. (2)

In this section, &, = (2n + 1)7T is the Matsubara, fre-
quency; X is the self-energy part; § are matrix temper-

ature GFs:
fafa P g>f’w > Oa
g = A
—9-a—a 9<Pz <0

A gaa
-
—aa
Moreover,
. 0 A . 0
A= « ’ Pz = o ’
—A 0 0 Dz,—a
where A is the order parameter, and p, is the projection
of the momentum on the Fermi surface on the axis z.
Matrices v have the same structure as p, .
BCs for the specular reflection of electrons from the
boundary: p| = p,sind; = pysind; = pssindgs, have
the form [9]:

where ga(s) = 1/2[ga(s) + 3, s)] Functions Ta(s) are
determined analogously. The index d denotes the diag-
onal and n the nondiagonal part of the matrix Ty(,) =
=1/2[T + 7,T7,). Coeflicients a; are:

1+ \/RTRL F \/D¢D¢
\/RT+\/R¢ ’

aza) =1-/RtR, ++/DtD}).
A F ~ S
One can exclude GFs 'I' and 'I' from these rela-

tions and obtain a system of BCs only for the GF g [17]:

Q1(2) =

a2+ ~ 2+ 2= ~ a— -~ ~
9001 + 029, + 9,03 +b49, = b3 — by,

2 2= a2ty N -~ (4)
9. by + b2ga + 9. bs + b4ga = by — bs.
Matrices b; in Eq. (4) are:
~ st ST a4 ~ At 2T o
bl:ngs+ngs’ b2:gs’rs +gsTs’ 5
~ st a4+ 2T a— ~ A+ AT A AT ()
b3=ngs +Tg b4:98T8 +gsTs'
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GFs § are connected with GFs being solutions of Eq.
(2) by the following relationships [9]:

(32)n = (65)n c08(Ba) + i7.(55)n sin(6a)

(5)n = (85)n c08(8a) + 72 (35)n sin(8a)
(82 )n = (57 )n coS(BL) + 67 (57 ) sin(87)

~F

(9a )n = (gf)n cos(Bq) +i7; (gf‘)n sin(Gy,)

or — o7,
2

or — 0",

0o = (@i -0%); BL="t (6)

The explicit form of functions T is not needed. These
functions are found from BCs. The diagonal parts of
matrices § are equal to the corresponding matrices §.
Equations (2) for the ballistic contact are solved in pa-
per [9, 18]. At the boundaries for # = b and z = a we
have:

9 =35 +9592; 95 =90 — 9
Matrices go are values of GFs § away from the bound-
ary:

g(f‘ = Sign(an)%z (8)

S ~

~S ~S 1 En —lA
90:90@4'(90)an|A|2 I

F <8

After the substitution of functions g, and g,, expressed
< F ~8

via g, and g, by Eq. (7), in the system of BCs Eq.(4)

and their solution in the linear approximation with re-

=S -F
spect to the functions g, and g,, we find the function
:F
9o*

sF  y/DyD#:(95)n

9e = — 7
Z = (1 = v/R+R))[g5 cos(8a) + isin(6,)] + (9)
+(1 + +/R+ R, )sign(e,)[cos(8a) + igg sin(64)]-

From Egs. (3) and (4) we find the rest functions nec-
essary to calculate conductance Eq. (1) and calculate
conductance at the ferromagnet side.

After carrying out the analytical continuation in
these functions (substitution ie,, for & & ¢d for retarded
and advanced GFs, respectively), we obtain the expres-
sion for the conductance or/s(V):

ezA dp” 7 de 1
or/s(V) = ES (2m)2 / 2T coshz(%) +
|A]
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Zy = [e(1 = W) + EQ+ W)]? + 4W|A[ sin® (6a),
Zy = [1+ 2W cos(20,) + W?]|A|? — 4We? cos(204)—

3 16W (|A]2 — £2)e? sin®(26,,)
[1+ 2W cos(20,) + W2]|A|? — 4We2 cos(260,)’

W=RR; £=+E-]AR.  (10)

At 0, = 0 the expression for conductance obtained in
paper [9] follows from Eq. (10). In the case of nonmag-
netic metal, when Dy = D this expression is the same
as that obtained in paper [18], and for D = 1/(1 + Z?)
this expression is the same as that obtained in paper
[19].

3. Andreev reflection. The quasiclassical GFs en-
tering Eq. (8) enable the conclusion that

[1 - ngzgf%z - g;‘%z.@f%z + ’i‘?%z’i‘?%z -
S An DA 2A, 2R, A

— Y47, YR%] = 4[-g, 7.9, -] ~ 1. (11)

Now, the comparison of the form of under-gap conduc-
tances in Eq. (1) and that of the corresponding Eq.
<R

(25) in paper [19] shows that the matrix elements (g, )¥

A

and (g, )¥ are the amplitudes of the Andreev reflection
probability a(e, 8,) in FIS contacts for energies less than
|A| (62 < |AJ?). Let us assume that a(e, 8,) are matrix

elements of (g, )F.

/D+D A .
ae,ba) = % = a(e,0,)e = (12)
Z =(1-+/RtRy)[ecos(by) — /|A]?2 — e2sin(y)]+
+i(1+ /RiR))[V|A]2 — €2 cos(8,) + €5in(8,)]-
The presence of the imaginary part in functions a(e, 6,)
means that Andreev reflection is accompanied by the

phase shift. The Andreev reflection probability A(e, 84)
(A(g,0,) = ale,04)a* (e, 0,)) is:

DyD|A?
A(ana) = %Ha

Z=[1-/ERPIAP+

+4\/RiR [/|A]2 — €2 cos(8a) + €5in(8a)]°.

(13)
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It follows from this equation that: (1) in terms of pa-
per [10] spin-mixing angle © for FIS contact is equal
to 6, (for SFS and NFS contacts ©=67 — 67= 6 — 6
[8, 10, 15]); (2) for 4 < O the Andreev reﬂect1on proba—
bility of the electron excitation with the spin projection
a is larger than that of the hole excitation; for 68, > 0
the Andreev reflection probability of the hole excitation
with the spin projection « is larger than that of the elec-
tron excitation; (3) the Andreev reflection probability
has maxima at ¢ = €, (at the values of the energy of
electron (hole) excitations corresponding to the energy
levels of Andreev surface bound states)

{ e =|A|cos(8y) for 64 <0,
€ =

14
0, > 0. (14)

e = —|A|cos(f,) for

Below the results of the numerical calculations of phase
shifts and conductance are presented. In the numeri-
cal calculations the relation between Fermi momenta of
contacting metals was the following: ps = (p+ +p;)/2.
Calculations are carried out for a rectangular barrier
with the height U counted off the bottom of the conduc-
tion band of a superconductor; [x(z) is the wave func-
tion of an electron in an isolator, x(z) = C; exp(yz) +

+ Caexp(—ye); v = /K + pf; k> = 2mp(U — E3); E
is the Fermi energy of a superconductor, my is the mass
of an electron in a barrier]. In this case the expressions
for 8¢ and 07, have the following form:

+i(pl 40 — Pb);

~ F 0> —7?) tanh(vd
6% = arctan ((pz,apz ¥) tanh(y )> , (15)

d _pd 4 7 . F
03 =03 0, = 0, + 2ip;, ,a,

Y(pE o +p5)

= (27;05 o7 + (22)’] tanh(vd)>
07, = arctan : 7 ,

Z =2[(03)° — (07,0)°] + v* — p2p;,o]" tanh® (vd),
so that the angle 8, [0, = (67, — 6" )/2— (6% —6¢ )] =

= (7, — 67 )/2 — (6% — 6% _) does not depend on the
location of the barrier.

Figure 1 shows the dependences of the phase shifts on
cos(¥;). All angles are connected by specular reflection
p| = p,sind; = pysindy = pssinds.

The phase shift §; slowly decreases as the polar-
ization of the ferromagnet ¢ decreases [from (—1.3) at
d = 0.05 to (—1.5) at 6 = 0.5 (prd = 1;k/pr = 0.8)]
and [from (—0.7) at § = 0.05 to (—1.2) at § =
(p+d = 1;k/py = 0.2)]. It means that the points €,
approach zero as the polarization decreases and k/p;
increases, however, at k/ps > 1, 04 rapidly decreases

osfp TT——uo
i 2
OF  kipr=0.8
-0.51
-1.0¢
i 1
-1.5F
» —2.0F prd=1 3
= - 5=04
= 2.5 . ] . ] . ] . ] . ]
2
<
£ 0 2
OF kpy=0.2
-0.5
1,08 !
—1.5F prd=1
I 3
d=04
20 L 1 L 1 L 1 L 1 L 1
0 0.2 0.4 0.6 0.8 1.0
cos(9)

Fig.1. Dependence of the phase shifts of reflection and
transmission amplitudes on cos(#;). Lines with num-
bers 1, 2, and 3 depict these dependence on cos(d,): 04;
(6 — 67) and (85 — 6%), respectively

down to zero. 6. With the increasing parameter pid
and other parameters fixed (but for k/py < 1) the angle
0, also tends to m/2. Note that the spin-mixing angle
0, for ferromagnets with large polarization is practically
the same for all electron trajectories.

The upper panel in Fig.2 shows the results of the nu-
merical calculations carried out according to Eq. (10)
not taking into account (dashed lines) and taking into
account (solid lines) the phase shift . The peaks in
the dependence of the conductance on V (Fig.2, upper
panel) correspond to the motion of the energy levels of
Andreev surface bound states towards each other as the
parameter k/p; increases.

The lower panel in Fig.2 shows the suppression of
Andreev reflection due to the reduction of the number
of conducting channels in a subband with a lower value
of the Fermi momentum and the effect of spin filtering.
Andreev surface bound states are formed in a supercon-
ductor due to the interference of electronlike and hole-
like particles with different spin-dependent phase shifts.
To demonstrate this, let us consider diagrams in Fig.3,
corresponding to Andreev reflection of an electron with
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Fig.2. Dependence of the normalized conductance

or/s(V)/oo from Eq.(10) on the applied voltage for dif-
ferent values of the polarization of a ferromagnet d=p; /p+
at the ratio A4(T")/2T = 6

the spin projection o and the energy less than |A| trans-
mitted from a ferromagnet into a superconductor. The
amplitude a(e, 0,) is:

a(a,0a) = da&*—a Z’,L—a[]' + Fia,f'a Z’,l—a E?x,a +
daglia gl,lfcx

= I eh he
1- rfaralga,fa —a,a
F 37 h
\/DaD*apfa/pz—aelﬂaIB;,—a
ewa - 67100, V RQR*CY g’:ﬁa Lu?:,a

The corresponding probability of Andreev reflection is:

+(F* o FaB 0B ) + -]

(16)

DaD—apy o/ 05— oaBd—aBal
: eh ’ 2 l;e 2, ’ (17)
1+ RaR—a|ﬂa,—a| |/6—a,a| - Q

Q =V RQR—Q I:COS(200¢)[/6;’:;0 }iix,a + ﬂ;?ﬁa i’zf,a]‘*‘

+isin(20a) :;eh *he _ peh he ]]

,—al—a,a a,—all—a,a

A(Ea Ha) =
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Fig.3. Structure of the diagrams corresponding to An-
dreev reflection in the superconductor: diagram (a) one-
act process; diagram (b) two-act process. The vertex
O is Andreev reflection of electronlike (solid lines) and
holelike (broken lines) quasiparticles by the pair poten-
tial. The vertex e is the normal reflection of electronlike
and holelike quasiparticles by the barrier potential. When
the solid line transforms into the broken line, O denotes
the vertex ﬂ;{’_a. ‘When the broken line transforms into
the solid line, (O denotes the vertex E‘LL,,. Parameters

do,ds,re and 7o are related as follows: d, = dapf/pfa;

foa = —Toda/dy; Do = dodo [18]

By comparing formulas (16), (17) with formulas (12),

(13) we find the vertices 8" , and B¢, ,:
e eiVIAP-EA o
Pra 1A |A]°

he | PR e—iy/[AE — 2 A®
N N A A

It follows from formula (17) that in the absence of the
interferential term @ the probability of Andreev reflec-
tion is a constant (independent of the energy ) quantity.
The interference of electronlike and holelike particles re-
flected by the pair potential and interface results in the
formation of Andreev surface bound states. At 8, = 0
the maximum in the probability of Andreev reflection is
at e = £|A| [19]. At 6, = +m/2 Andreev surface bound
states with the width I equal to:

_ (1— VEFRD)[A]
2YRTEL

are formed at € = 0 on the Fermi level. The peak in
the differential conductance of an FIS contact at the
zero voltage may be used to determine the polarization
of strong ferromagnets by comparing experimental data
with those calculated according to formula (10).

Thus, in the present paper the ballistic conductance
of the point FIS contact is calculated. The dependence
of Andreev surface bound states on the spin-dependent
phase shifts of the electron states reflected from and

(19)
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transmitted through the potential barrier is found for
the interface with finite transmission. By the example
of a rectangular potential barrier it is shown that these
states are manifested in the peaks of the dependence of
the conductance of the FIS contact on the applied volt-
age.
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