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The classical electrodynamic system of field and a single point-like source is considered in even-dimensional
space-time. The problem of self-interaction is discussed. It is manifestly shown that all singular terms appear-
ing in these equations can be regularized. Relations between formulae for radiation and radiation friction are

discussed.
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1. Introduction. To deal with models involving
higher dimensions (see [1] and references therein) re-
quires understanding field theory in higher dimensions
and, in particular, solving the problems of radiation and
self-interaction. These problems are well-investigated in
ordinary flat four-dimensional space-time (see, for ex-
ample, [2, 3]). At the same time, the radiation theory
in higher dimensions is not studied in detail until now.
Multi-dimensional radiation is considered in a rather re-
stricted set of works, see [4, 5]. The most important
fundamental point of the radiation theory is interaction
between field and a charged particle inducing this field,
or self-interaction. In fact, influence of the field on the
particle produces a force similar to friction. This is since
the particle moving with acceleration loses energy with
the radiated field. Integration over the field degrees of
freedom transforms this system into a “quasi-particle”
being acted with the radiation friction force on. This
leads to an infinite mass of the field. The problem of
self-interaction and regularization of corresponding in-
finities is considered in [6] in six dimensions. A receipt
for obtaining the equations of motion based on rather
general principles relating radiation and radiation fric-
tion is described in [7] in six-dimensional space-time.
Unfortunately, this technique fails already in eight di-
mensions, see [8]. Therefore, in order to come to higher
dimensions, we apply here the method of expansion to
series described in [6]. In the present paper the clas-
sical model of electro-dynamics with a single particle is
considered in any even-dimensional space-time. It is ob-
tained that all the infinite terms can be regularized. It is
shown that a radiation friction force can not be treated
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as extremum of an ordinary action and its relation to the
radiated momentum of accelerated particle is discussed.

2. Equations of motion. 2.1. The least action
principle and equations of motion. The following action
is used for a description of motion of a charged particle
in electro-magnetic field in D- dimensional space-time

(see [2])
S=— o | dsa —
a; m / s
—a / Fu F*dPz - e, / A, dzt. (1)

aCT

Here there are three terms: for charged particles, field
and their interaction. The set T is a set of charged par-
ticles. It can be discrete for point-like sources or con-
tinuously distributed for charged medium. A factor a
depends on the chosen scale. It is convenient to choose it
different in different cases. The conventional technique
allows one to get the following equations for the particle
and field:

ma‘?—: = ealF‘“’u,,; (2)

P = i 3)

i@) =3 ea [ 8o = 2(9)ds(o) @
aCT

As usual the Lorenz gauge is used. In this case the field

equation (3) take the form of the wave equation

1 .

We shall use the Green function to construct its solu-
tions.
2.2 The Green function for the wave equation. Con-
sider the equation
o® g™ (z) = 6(x). (6)
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It is well known that the solution of (5) is given by the
following expression:

Az/G(w'—w)E

L iy (1)

For solving (6), one can make the Fourier transformation
of the whole equation. The resulting equation reads

k2G (k) = 1. (8)
One can easily find its solution

G(k) = 5 +

5 + B(R)S(K2), ©)

where ®(k) is an arbitrary function. The term ®(k)4&(k?)
is responsible for free electro-magnetic field, which is not
produced by any source, and will not be considered fur-
ther. Then the expression for the Green function has the
following form

z(wt (k7))

GO (z ————d"7 k. (10)

After quite technical calculation one obtains the relation
for the retarded Green function:

oD _ %ﬂ(z—n)/zé;(mo)g(D/z—n (22),

for even D; (11)

D—
aP) = Mw—Dﬂp (?) X

x0(xo — |z|) («?)B~D)/2, for odd. (12)
One can observe from these formulae that in odd-
dimensional space-time the interaction is nonlocal be-
cause the whole history of previous motion of the parti-
cle affects its present motion, while in even-dimensional
space-time the final expression for potential (7) would
depend just on higher derivatives of the velocity. This
very case is considered further.

3. “Self-Interaction”. 3.1 Integration of equations
of motion. To deal with the self-interaction one should
consider a system of a point-like source and the field it
produces. It is necessary to solve the problem of how
the field of some particle affects itself. In order to take
into account the influence of the field on the particle,
one may follow the simplest way: to substitute solution
of the field equation in the equation of motion of the
particle. However, one encounters some difficulties on
this way: the field is singular in the very particle posi-
tion. Still, there is a technique that allows one to study
these singularities and to exclude them. First, one has
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to choose the parameter o = 1n(2~D)/2 such that the
solution of equation (5) for a point source becomes of
the following form

A=e / 56 P2 ((z(s) — 2(3)D)u(3),  (13)

where u is D-velocity of the point-like source. The no-
tation §_ is introduced here for 6(—t)d(z) where 8(z)
is the Heaviside #-function. Integration goes over the
whole world-line. Then one gets from equation (2) the
equation for the self-interaction

m— — 2¢2 /d 52D/ (5 _ 5V ([ — &, i, u). (14)

Following the technique introduced in [3] and [6] after
change § = s + o one can rewrite equation (14) as

m——2e /dax

x 8P/ (52 4 ((2(s) — z(s + 0))? — 02)) x
X ([#(s) —z(s + 0),u(s + 0)],u(s)) (15)

and expand it to the Taylor series:

0 D— k
du 2/25(_( DY)

— =2
Mis ~ k!
k=0

x ((2(s) — 2(s +0))* = 0?)* x
x ([x(s) — z(s + o), u(s + 0)], u(s)). (16)
Now it is necessary to compute the following integral
o0
AT = / sM )tmat,
o0

or, rewritten,
0
m — / M) (£2)¢mdt.
After changing the variable one obtains

) / 5 (2)2(m=1)/2 4y,
0

The integration at the point 0 is undefined here. We sup-
pose that one integrates from — 0. A} does not vanish
just only in the case m < 2N for even m and m = 2N +1.
Then one finally gets

[eo)
Y SIN=n) (g
n 1/2 T
0 \/_

wp = (17)
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All of these integrals are singular. However, the follow-
ing expression is finite:

2N+1 _ (_1)N+1 1
agp = (18)

Using this results one can notice that the expression (16)
being expanded to the series in ¢ gives only finite num-
ber of nonzero terms. At first, consider the terms with
even powers of . All of them have infinite coefficients.
Note that, as the space-time dimension increases, the
structure of terms in the series (velocity polynomials)
does not change, just new terms emerge and orders of
singularities grows. Therefore, one suffices to consider
the only term with m = 2N reproducing all necessary
structures. It has the following form

0 4@

2 D—2+2k ([, uM], u)

2e Z A(D 2)/2+k 1 1+ 1)1
pH+t<D—-3+2k o

where the new notation is introduced

ﬁ u(z& u(]a))
ot (fa + D)!(Jo + 1)V

k
Zla+]a = ) ia + ja > 2,Va.

These terms are singular, however, if they are La-
grangian, i.e. they can be obtained by varying some
counter-terms in the action, then one suffices to rede-
fine the action in order to obtain the finite equations of
motion of “dressed” particle.
3.2. Relation between radiation and radiation fric-
tion. The finite term has the following form
—1)P/24k((D — 2)/2 + k)!
T R LR TLELT
pHl+t<D—2+2k
p ([, 0], )
Eo@+ 1)

(20)

This term is expected to be non-Lagrangian because our
system is not closed and (20) can be treated as friction
due to D-momentum losses due to radiation. Calcula-
tion of these losses is the matter of technique.The energy-
momentum tensor for electro-magnetic field is (see [2])

1
T = da(—F* F¥y + Zg’“’F)\aF"”). (21)

Being integrated over some surface at infinity, this ten-
sor gives the total radiated D-momentum, i. e.

dP*
— =— ¢ T"dg,. 22
- f do (22)

o

On the other hand, it is easy to check that the obtained
formulae for the radiation friction and radiated momen-
tum do not coincide even in the simplest case of four
dimensions. It may be treated as if their difference is
absorbed into the derivative of momentum, i. e. this
difference is the total derivative of some function. In
this way, one can predict the formula for radiation fric-
tion for D = 4,6. This approach is discussed in [7, 8],
while for D > 8 it fails, and one has to use another
technique.

3.3 Receipt for the equation of motion from the
action. In subsection 3.1 it was mentioned that non-
Lagrangian terms can be regularized by redefining the
action of the particle. One may expect there is a re-
ceipt to obtain the corresponding terms at the level of
action (1). For this let us substitute the obtained so-
lution of equation (5) into the action (1). Variation of
thus obtained action S* differs from the variation of the
old one because variations of the field and the particle
trajectory are not independent, but related by (5). On
the other hand, this relation implies that the field on the
light cone with vertex at the point of the particle tra-
jectory explicitly depends on the motion of the particle
in this point only. Therefore we choose to integrate the
second integral in (1) D-volume to be between the light
cones with vertexes in the initial and final points of the
particle trajectory. Then variations of the field on these
cones and the particle trajectory in the initial and final
points are equal to zero simultaneously. Finally, one gets
the expression for the redefined action S*

05*=— m/&ds - e/&m”BVAudm”—e /Apéda:“—
—e/&Audm“ —4a/F’“’6u6A,,dD:v. (23)

Notice that A, [2(s)] is the functional given by (13). Us-
ing the Gauss theorem and equation (5) one can derive

5S* = 8S — 4o / F#5A,dY,. (24)
P

Then the equation given by the variation of S§* differs
from (14) by the divergence obtained above. This diver-
gence gives non-Lagrangian terms in the final equation
of motion. One suffices to check that the second varia-
tion is nonsymmetric to show this. It means that

8y / FP§,A,dS, =
= / 015, A" 5, A,d%, — / 8v8, A5, A,dS, +
+ / Fov§,5,A,dY,. (25)
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Thus a criterion whether this term is Lagrangian is not
fulfilled:

8,055 —0,6,5= / (6,F" 8, A, — 5, F"§,A,)dS, =
- / Pz (06, 4,5, 4) — (06, 4,5,4)) £0.  (26)
It is simple to rewrite S*

S*=-m / ds — g / Adz? — 20 / P A,dS,. (27)
P

First consider the second term in the final expression

2 ] faeom

It can be regularized with application of the same tech-
nique which was used for the equation of motion

o o((D— 2)/2+k)( 2)
—/ds/da B E— X

x ((2(s) — z(s + 0))? —02) (u(s)u(s +0)).  (29)

Its variation gives

/ 5021 (a(s) ~ 2(5))") x
(i(s) - 2(3), (@)} (o). (30)

Note that the symmetric part (with even o in (16)) of 6_
can be considered as %5 , the coeflicient emerges since the
integration goes only over the negative part of the real
axis, then, the antisymmetrical parts are excluded due
to the symmetry of §%)(¢2). It means that the second
term of S* contains all the infinite Lagrangian terms. As
it was said previously, it means that they can be regular-
ized or excluded at all. The former means appearance of
additional “masses”. Being Lagrangian, these terms im-
ply that they are the total derivatives and can be treated
as contributing to of D-momentum. Calculation of the
final term in (27) gives (see Appendix)

(D—4)/2 2
—2ae/zs ((ﬁdis) ﬁ) dQds. (31)

This expression can be integrated over and excluded
from the action. Then it is clear that the divergency
given by (24) is responsible for the radiation friction
force. Consider the variation of the field caused by the
variation of the particle trajectory. Using the formula
for divergency (24), one gets the expression for the ra-
diation friction force

#)?)(dzdz). (28)
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_ NyUy
fu = 4ae?(—1)(P-2)/2 / dQp_1 {—(;‘m) —n,w} X

d 1 d\P? w
d—(ﬁd—) 2" 32

This formula is not as convenient for technical compu-
tations as (20), on the other hand, the very procedure
of the derivation shows that the radiation friction can
not be obtained as an extremal of action, and it allows
one to check the relation between the radiation and the
friction. The derivative of D-momentum obtained with
integration of the energy-stress tensor is

()
d/ 1 a\P9?2 4 °
{d‘(Wd_) 2(nu)}' (33)

Using the Leibnitz rule one can show that these two
expressions differ just by a total derivative as it is ex-
pected.

4. Conclusion. The proposed procedure of inte-
gration over field freedom degrees in the action shows in
general that all the divergencies are Lagrangian, the ra-
diation friction is well-defined, and one can get the finite
equation of motion for a particle with the friction force.
However, the precise expression for these divergencies
strongly depends on the regularization procedure. One
might expect an appearance of all possible Lagrangian
terms restricted just by the Poincaré invariance, i.e. one
suffices to consider in the action the terms made from
products of (u(Du(¥)) and some coefficients, which may
be infinite. One could also expect that the terms with
the same order singularity have to have the same total
degree of derivatives. It is since the diverging quantity
is scaled with a regularizing length that can be treated,
for example, as a size of the particle. On the other hand,
one can hardly a priori say anything concrete about rela-
tions between coefficients of these terms. However, such
relations are obtained, despite the proposed procedure
of regularization does not define a concrete representa-
tion for the delta-function, i. e. it presents a rather
wide class of regularizations. An existence of these rela-
tions can be induced by some symmetry. However, such
symmetry has to have a rather general character, since
the number of the possible additional term combinations
grows as their order increases.
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Dim Rad. friction
4 2 (i + 4%u)
6 —lls(uu("‘))u - %ﬁzu - Eu(“) - —(uu)u - 1—12u4u - %uzu
8 %ﬂz(ﬂu(&)u + %u(‘i) + % 42 (udi)d + mu i+ muﬁu + 16 (uu)zu + gt 2u®) 4
+%(1’Lu(5))u + %(iju(‘l))u + %(u("‘)) u+ %( au®)a + is ( u(3))u + 3 17 uzuzu + 20“ 2i+
+ 45 (@i)u® + L (au®)i

Lagrangian terms Variations of these terms
4 1 (]
6 a2 3u%u + 3(vi)u + ul®
8 | 15(au®) + 1042 + %124 —%(uuw))u — 55 i — 53925 ata — 535 (vii)a?u
— 87( )i %uzu(‘” — % (au™®)u — 25(iu®)u — Eu(s)

tific Schools # Sh-8004.2006.2, by RFBR grant # 07-02- SA — 2/6((D_2)/2)((a: — #))(& — «, 63)dE +

00878. R -

ppendix

((D-4)/2) 2\2) J55 —

Calculation of surface integrals. To calculate + /9 ((z — 2)°)déz =

integrals similar to the final term of (27), the technique (D-2)/2

. . . 1 d (Réz)u

introduced in [4]. One fixes some coordinate frame to =57 R
compute the third term and chooses the surface X given (Ru) ds (Ru)

by a light-like vector R originated from every point of ( 1 d\P22 5z (36)
( .

the trajectory. Then 2(Ru) ds
OR Then, the final term of (27) is equal to

dXH= — V717D -2 ,,aRA“ D=2 4sdb;. . .d0p_a, (27) is eq

601 6013 2 1 d

— 2aq€2 il
ae / ((Ru) ds
»
whe;I:e f%“ = R(1,cos61,sinf; cosbs,...) = Rn¥. In ) 1 i (D—4)/2 pu,v _ pvpu
particular, 2(Ru) ds TRy
(D-4)/2
R, 1 d _Y aw
%= Ry 4 Gomgn)  mmg™ O

Since the vector R* can be brought through the deriva-

Taking derivati fRd it . B it
aking derivatives of R decreases its power. Because i tives the second term in the brackets can be excluded

is assumed that R — oo then dR/ds = 0. It is con-
venient to represent this expression in terms of R and
((

2
d 1 d\P M2
u _ il _- = T
ae/ds ) 3(nu) dQds, (38)

2(nu) ds
_ 22
A= 6P (q - ) dE =8 _

2(% — z, 1) where
ds 4\ (P-9/2 _
= —e (—7.—. o= = — 1 VY1..YD— Ony, Myp_s
2Ux — 7)2 ) 2z — dQ = ————e#M -2y, —— L —— do;.
y f) : D—4)/2 @-od (nu) #06, O0Yp-2 H

—e d v (35) (39)
2(Ru) ds 2(Ru)

For the sake of convenience, we choose the velocity to

For the variation be directed along the first axis:
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Terms
2 .
4 30
6 —=u?i — Z(i)u — 5 ul®
8 | =60 L_u(®) +3 403 42 (Wit)u + %(uu)u + 1223;0“ u—+ —u 24(3) +3 il U+ 550 (uu(4))
m(uu(:‘))u + m(uu(m)
Rad. momentum
4 2a%u
6 —Lutu 4 Situ + o5 (Ui)d — 0l
8 | ok (u®)2u+ 19 42(au®)u — 1??30 ()2 — (28 02?4 Spudu + gL ()i
_81321263012 (@i)i + 7555 (du®)i + gg¥irutii — g (i)ul®
dQ = V1-—v? v The third table represents the terms whose derivative
1—wvcosb, is the difference between the radiation friction force and
1 cosf;  sinb; cos by the radiated power. For using this one must multiply
1 » 0 D-2 every expression by eZ.
x| Vi—v?  Vi-e? H do;= One can compare formulas for the radiated power
0 —sinf,  cosf cosb; i=1 and the radiation friction. Formulas for the radiated

power are presented in [4], several formulas are also pre-

= dQp_1. (40)

sented in the fourth table, but with the a-factor intro-

duced above.

It means that this expression coincides with an infini-
tesimal element of (D — 1)-solid angle and doesn’t de-
pend on the proper time of the particle, can be brought

through derivatives. Calculating such integrals requires 1
calculating of the following integral tensors 2.
nHipH2  pHs 3
——————dQp_;. 41 :

| o “
4.

To calculate them, one can use a general formula intro-
duced in [4] or a recurrent relation:

nkipk2 phet1
| o=
1 0
— u,us-)-l — Ms+1V __ ul-‘s+1u'/ _ X
{ D-2+s (n ) ou” }
nhipH2  pHs
x / = LI (42)
Examples. Several examples are presented here.

There are formulas for radiation friction in different di-
mensions in the first table. All these formulae can be

easily computed with the help of a program for sym- 6
bolic calculations. In this table, one must multiply every 7
expression by e2. '

New additional Lagrangian terms emerge as the di- 8

mension grows. In the second table, only the new terms
in each dimension are written.
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