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We use the Mellin-Barnes representation in order to improve the theoretical estimate of mass corrections

to the width of light pseudoscalar meson decay into a lepton pair, P — I11™.

The full resummation of the

terms In(mj /A®) (mi /A®)" and (m]/A®)" to the decay amplitude is performed, where m; is the lepton mass

and A = m, is the characteristic scale of the P — y*~

the ete™ channel is negligible and for the pp~

PACS: 12.38.—t, 13.25.Cq

I. Introduction. Rare decays of mesons serve as
a low-energy test of the Standard Model. Accuracy of
experiments has increased significantly in recent years.
Theoretically, one of the main limitations comes from
the large distance contributions of the strong sector
of the Standard Model where the perturbative QCD
theory does not work. However, in some important
cases the result can be essentially improved by relating
these poorly known contributions to other experimen-
tally known processes. The famous example is the calcu-
lation of the hadronic vacuum polarization contribution
to the anomalous magnetic moment of muon (g —2),
where the data of the processes ete~ — hadrons and
T — hadrons are essential to reduce the uncertainty (see
for review [1—4]). It turns out that this is also the case
for the rare decays of light pseudoscalar mesons into a
lepton pair [5]. Interest in these processes revived after
new precise measurement of the decay mg — eTe~ by the
KTeV collaboration [6]. The Standard Model prediction
[5] disagrees with the KTeV measurement by 3.30, with
the theoretical accuracy exceeding the experimental one.

In the lowest order of QED perturbation theory,
the photonless decay of the neutral meson, P(q) —
=1 (p-) +1(py), ¢ = M?, p% = m?, (M meson
mass, m lepton mass) is described by the one-loop Feyn-
man amplitude (Fig.1) corresponding to the conversion
of the meson through two virtual photons into a lepton
pair. The normalized branching ratio is given by [7-9]

+
Ro(P — I17) = —B;’g((l;__:lwl))
=26 (M?) (5) 1A () P, &)

where 3 (%)
tude is

= y/1—4m?/q? and the reduced ampli-
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* form factor. The total effect of mass corrections for
channel its order is of a few per cent.
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Fig.1. Triangle diagram for the P — [T1™ process with the
pseudoscalar meson form factor P — v*v* in the vertex

2

q2><

A(g) =
'k (qk)2—g2k?
% / in? (k2+ie) [(q—k)2+ie] [(P— —k)2—m?2 + ze]
X Fpyeys (K%, —(q — kb)),

with the transition form factor Fpy«y«(—k?,
normalized as Fp,«4+(0,0) = 1.

The imaginary part of the on-shell amplitude
A(g® = M?) comes from the contribution of real
photons in the intermediate state and can be found in a
model independent way [8]

(2)

—q?) being

1-6(¢)
1+ﬂ(2)
(3)

A once-subtracted dispersion relation for the amplitude
in Eq. (2) is written as') [10]

+—/ dImA oy @

DIn this derivation it is tacitly assumed that the imaginary part
of the off-shell amplitude .A(¢g%) has the same form as in (3) with
M? substituted by ¢2.

™

TmA(M?2)= IOk n(y(M?)), y(¢®) =

A(d) = A(d
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The second term in Eq. (4) takes into account strong g2
dependence of the amplitude around the point g2 = 0
occurring due to the branch cut coming from the two-
photon intermediate state. Integrating Eq. (4) for ¢® >
> 4m? one arrives at [11—13]

Re A (¢°)
1 1

e Zln2 (y(q ))+E+LIZ(

=A(q2=0)

y(@))|, ©)

where Lis (2)
function.
Usually, the subtraction constant in (5), contain-
ing the nontrivial dynamics of the process, is calcu-
lated within different models describing the form factor
Fposqs (K2, ¢°) (e.g. [5, 10, 12]). However, it has recently
been shown in [5] that this constant may be expressed in
terms of the inverse moment of the transition form fac-
tor given in symmetric kinematics of spacelike photons,

G(t) = Fpyere (1,1),
A (¢ =0) =3In (m> -

S| [Tafl) 5

Here, i is an arbitrary (factorization) scale. One should
note that the logarithmic dependence of the first term
on y is compensated by the scale dependence of the in-
tegrals in the brackets.

The accuracy of these calculations is determined
by omltted small power correctlons of the order
O( A;, Az In A2) and O(Mz, J\m/ﬂ In ¥ ) in the r.h.s. (5),
where A < M, is the characterlstlc scale of the form
factor G(t). The aim of this work is to improve the
result (6) for the amplitude A (¢°> = 0) of the P — [T~
decay by taklng into account all order mass corrections
~ 7\12 3 7\12 ln

II. Mellm—Barnes integral representation. We
evaluate the amplitude A (¢?) following the way used in
[14]. Let us transform the integral in (2) to the Euclid-
ean metric kg — ik4. The corresponding integral is
convergent due to decreasing of Fpy««(k?, (g — k)?) in
the Euclidean region. Then use the double Mellin trans-
formation for the meson form factor

= — [ (dt/t)In (1 — t) is the dilogarithm

Fpysyes (k21 (q - k)2) =

1 A2 z1 A2 22
_W i dz® (21, 22) (ﬁ) <m> , (1)

where A is the characteristic scale for the form factor,
dz = dz1dzs, the vector o = (01, 02) € R?, and ® (21, 22)
is the inverse Mellin transform of the form factor

oo oo
(] (Zl,ZQ) = / dt1/ dtzti171t§271Fp7x7* (tl,tz)
0 0
(8)

which has singularities at Re(z;) = 0,—1,... Introduc-
ing Feynman parameters in the standard way, the de-
nominator part of the integrand in (2) can be written
as

1
27+ [ -] o= — k2 +m2
T+ 2z1+2) >
_1"(21-1-1) Z2+1 /Hda, < izzlaz)x

zZ1 zZ2
o

X 1 pp (9)

where D = a3m? — aja2¢®.
reduces to

Then the k—loop integral

_ q2k2
/ w2 k2 +D3+21+z2 =

x [—3 + 233 (m2 - iq2> (21 + zz)] .

Combining all factors we get

T (21 =+ Zz) y
T (3 + 21+ 22) Dztz2

1
(@)’
& (21,29) (A2)z1+22 T (21 + 22)
D(z1+1)T (22+1)

A(e?) =

X / dz
o+iR2
z21 Z2

3 3
alla
X/ da15 1-— a; 12 X
il;[l ; (@3m? — apazg?)™

2( 2 1.2
o (m® - 34°)
2
azm? — oy 02¢?

-3+2 (Zl + 22) (10)

In the general case, to step further we need to per-
form the third Mellin transformation for denominators
containing a; [14]. Then, considering the process P —
— I*]~ with mass hierarchy m < M < A ~ m, we
expand the integral obtained over the ratios of the lep-
ton and meson masses to the characteristic scale of the
meson form factor A by closing the Mellin contours in
an appropriate manner. However, in the present study
we are interested in the amplitude at ¢> = 0. In this
limit, the Feynman parameter integrals in (10) can be
carried out in terms of I'-functions, and we obtain the
following Mellin-Barnes representation for A (¢*> = 0)
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Fig.2. (a) Singularities of the integrand in (11). The semi-planes where the arguments of I' functions produce singulari-
ties are depicted by lines L; with shadowed bands. The point o characterizng the integration countor is from the triangle
{:1:1 >0,z2 > 0,22 +21 < %} (b) Rotation of Ia allow ones to read off the degeneration

1

A0) = 5 /+.R2 dz (§2)_11—Z2 %

(271)
T (21) T (22) T (212) T (1 — 22‘12)
x T (3 - 212) X
(—3 =+ 22’12) P (2'1, 22)
<[ Fresres -

with o in the triangle {z; >0,z > 0,22 + 21 < }
chosen so that the integration path o + iR?> does not
intersect the I'-function singularities given by the polar
complex lines (see illustration in Fig.2a)

L]_Z{Z]_Z—I/}, L22{2’2=—V},

Ly :{z1+2=—-v}, Ly:{l-2(zn+2)=-v},

v=20,1,2,..
(12)
In (11) we introduce the notation &2 = m?2/A2
Z12 = 21 + 22 and combine the regular expression in

the squared brackets.

In further analysis of the integral (11) we use the
technique suggested in [15]?). Following this line let
us associate the vectors in 2-dimensional space with the
coefficients of the I'-function arguments in the numer-
ator and denominator of the integrand in (11) a1 =

2)When our study was completed we became aware of the results
of the work [16] where similar technique of the two-dimensional
counter integrals is used.
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, a2 = (011)1 as = (1a1)a s =
,—1). Next, define the vector

A=Y a;—) ¢;=(1,1) (13)

and draw through o the straight line A =
= {z € R? : (A,z) = (A, 0)} with the normal vector A.
The scalar product is introduced as (z,y) = z1y1 +Tay2-
The point o divides Ia into two rays IT and I~ so
that the pair of directions /T and A yields the same
orientation of R? as the pair of coordinate axes z; and
z3. The half-plane 7o = {z € R? : (A,z) < (A,0)}
with boundary In and the integration half-space
IIa = ma +iR? = {z€C?:Re(A,2) <Re(A,0)}
characterize the domain in the space of integration
variables z in which the integrand is a decreasing
function.

Now we need to define the divisors given by the con-
dition

(_2a _2)a

Di=U{L;j:L;Nnl~ =0},D,=U{L;: L;nI" =0}.
(14)
The theorem [15] states that in the nondegenerated case

(A # 0 and all a; )t A) the integral like (11) is given by
the sum

A(0) = Z res [Integ rand.A (0)], (15)

zp€llA

where res [Integ rand.4 (0)] is the residue with respect to
z

the system of divisors {D1, D2}.
The integral (11) corresponds to the degenerate case
since a3 and a4 are parallel to A. In this case, one has
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Ls € D, and L; € D,. However, Ly and L, are paral-
lel to Ia and cannot to be ascribed to any of divisors.
To read off the degeneration we slightly rotate [ with
respect to the point o in clock-wise or anti-clock-wise
directions (Fig.2b). Now we have crossings of L3 4 with
the rotated line and are able to decide to which divisor
they should be related. One has two cases

1) Dy = {L3, L4}, D> = {L1, L3}, (16)
9) Dy = {Ls, L3}, Ds = {L1, L4}

We are interested in the intersection of divisors, i.e.,
intersections of all Lgl) € D; and all Lz@) € D5 so that
these intersections LEI) N L§-2) belong to the half-space
TA.

Another important property is the intersection rank,
the number of lines that meet at each point. If only two
lines L) and L(?) meet at each point z, € D;ND>NIIA
(rank 1), then one has only simple poles. If the inter-
section rank is more than one, than one may either ap-
ply the theory of multiple residues or introduce small
e—parameters in the arguments of I'—functions in such
way that all poles become simple ones (like in the di-
mensional regularization method).

We prefer here the second approach, namely,
Ly,Ly,L3 in (12) meet at the same points (—a,—f)
where a,3 = 0,1,... are positive integers. In order
to get rid of this kind of degeneracy, we add a small
parameter ¢ to the argument I'(22) — I'(22+¢) in
(11). Now we ready to analyze the poles and their

residues. Consider first the case 1) in (16). We have
two sets of intersections in D1 N Dy N A
LyNLy,LyN L, amn
which may be parametrized as
22 +€=—q,
LyNL;:{ 72 ,
21 = _181
Zat+e=—a
L20L3:{ 2 r (18)
zn1=a—B+e¢,

Calculating residues we get two contributions to the in-
tegral

A(0) = Aq (0) + A (0), (19)
2 (1) atate
A, (0) — a’ﬂzzo ( a‘)ﬂ' (52) +8+ %
><1"(—a B—e)T(1+2(a+pB+¢))
FB+a+p8+e)

x(=3—-2(a+B+¢)) [7( ( )a Zﬂ;i)] (20)

®© o atpB
45(0) = ﬁZ_O( (@)
.

The second case in (16) is reduced to the first one be-
cause one has single parameter (£) integral. If one would
be interested in the expansion in inverse powers of £ one
needs to consider intersections L4 N Ly, L4 N L3 instead
of (17).

By using the representation (8) one may show that
the corresponding residues are

(-, —h) _ ( {yetB plap)
Tayr(-g ~ 00 @)
22
e =V [ e o),

where Fl(fy’ﬁ 3 (0,0) denotes the derivatives of an order
of a and f in the corresponding arguments of the form
factor. After these substitutions one sum in (20) and

(21) may be performed with the result

> G(n)
N e
F(-n—¢)T(1+2(n+¢))
X TGnte) B3+2(n+¢),

:Z;(—
T(1+2n)T (—¢)
X TG+n)T1—c+n)

(3+ 2n) / Q=G (1)
0

where we again use G(t) = Fpy«~(t,t). Now we expand
in € and take the limit € — 0 with the total result

L&) T+
A(0) —; nl TA+n)TB1n)

x {G("> (0) [2+ (3+2n) (In4€2 — 4 —

—1/1(n+1)+1/)<n+%) —¢(n+3))] +

+ (3 +2n) / ~ @Gy (t) lnt} : (23)

Note that the e poles contained in the intermediate
steps of calculations are canceled in the final expression.
To the lowest orders in &2 expansion one gets

A© (0) = % [3 Ing? — g +3 / atG® (t) lnt] , (24)
0
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mﬂwz—gékmeFmg+§>+
T aG® (1)1 ]
+5]€ tG?) (t) Int (25)

The leading order expression (24) is in accordance with
the result (6) obtained in [5]. In the general case it is
convenient to convert the sum in (23) into the integral

form
371' / \/

{[(1n4£2—7)(2+y)+2 (1 - )]G (~4y€?) +

+(2+vy) /Ooo dt[lntG(l) (t — 4y€?) +

—3t _ ot —t
+ G(—4ye &%) ——

G4 . 26)

Finally, let us consider the form factor we are inter-

ested in from a physical point of view
1

G(t)=——.

®) 1+¢

For this form factor from (24)—(26) one gets the coeffi-
cient of logarithmic term as

Mm:%gx

XP+&Lwh—QHL%8ﬂm8+O@%JW)

or the first terms of expansion
10 ., 4 2
A@) =3 1+ 5¢ +0(¢*) | Ing? -

5 86
21+ 2=
4<+

RIS (g‘*)) : (28)

3

Thus, one can see that in the realistic case for muon,
& = m2/A* ~ m2/m2 ~ 0.02 the corrections to the
leading order coefficients are of an order of 1% and for
an electron pair they are negligible.

IT1. Conclusions. The aim of this paper is to clar-
ify the situation with rare decays of pseudoscalar mesons
to a lepton pair. The situation became more pressing
after recent KTeV E799-II experiment at Fermilab in
which the pion decay into an electron-positron pair was
measured using the K; — 37 process as a source of
tagged neutral pions [6]. The branching ratio was deter-
mined to be equal to

KTeV
Bno rad

= (7.49+0.29 £ 0.25) - 1078
(29)

(= ete™)
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The standard model prediction based on the use of
CELLO and CLEO data on the transition form factor
T = yy* [19,20] gives [5]

BTheor (70 ete™) = (6.2 +£0.1) - 1078, (30)
which is 3.30 below the KTeV result (29). Therefore, it
is extremely important to trace possible sources of the
discrepancy between the experiment and theory. There
are a number of possibilities: (1) problems with (sta-
tistic) experiment procession, (2) inclusion of QED ra-
diation corrections by KTeV is wrong, (3) unaccounted
mass corrections are important, and (4) effects of new
physics. At the moment the last possibilities was rein-
vestigated. In [17], the contribution of QED radiative
corrections to the 7° — ete~ decay, which must be
taken into account when comparing the theoretical pre-
diction (30) with the experimental result, (29) was re-
viced. Comparing with earlier calculations [18], the
main progress is in the detailed consideration of the
v*y* — ete~ subprocess and revealing of dynamics of
large and small distances. Occasionally, this number
agrees well with the earlier prediction based on calcu-
lations [18] and, thus, the KTeV analysis of radiative
corrections is confirmed. In the present paper, we show
that the mass corrections are under control and do not
resolve the problem. So our main conclusion is that
the inclusion of radiative and mass corrections is unable
to reduce the discrepancy between the theoretical pre-
diction for the decay rate (30) and experimental result
(29). The effects of new physics were considered in [21]
where the excess of experimental data over theory is ex-
plained by the contribution of low mass (~ 10 MeV)
vector bosons appearing in some models of dark mat-
ter. Further independent experiments at KLOE, NA48,
WASAatCOSY, BES III and other facilities will be cru-
cial for resolution of the problem.
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