Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 61-80
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 81-92
      Volume 92
      Volume 91
      Volume 90
      Volume 89
      Volume 88
      Volume 87
      Volume 86
      Volume 85
      Volume 84
      Volume 83
      Volume 82
      Volume 81
Search
VOLUME 87 (2008) | ISSUE 10 | PAGE 647
High temperature superconductivity in transition metal oxypnictides: a rare-earth puzzle?
Abstract
We have performed an extensive ab initio LDA and LSDA+U calculations of electronic structure of newly discovered high-temperature superconducting series ReO1-xFxFeAs (Re=La,Ce, Pr, Nd, Sm and hypothetical case of Re=Y). In all cases we obtain almost identical electronic spectrum (both energy dispersions and the densities of states) in rather wide energy interval (about 2 eV) around the Fermi level. We also clain that this fact is unlikely to be changed by the account of strong correlations. It leads inevitably to the same critical temperature Tc of superconducting transition in any theoretical BCS-like mechanism of Cooper pair formation. We argue that the experimentally observed variations of Tc for different rare-earth substitutions are either due to disorder effects or less probably because of possible changes in spin-fluctuation spectrum of FeAs layers caused by magnetic interactions with rare-earth spins in ReO layers.