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We consider induced pair production in an external field at finite temperature. One-loop correction to
the Green function of a meson is calculated semiclassically within the framework of saddle-point analysis
of Schwinger proper time integrals. This correction appears to be exponentially small in terms of inverse
temperature dependence. Low-temperature limit is shown to be in full agreement with previously obtained
zero-temperature results. The corrections in the low-temperature limits are estimated up to the leading expo-
nential and pre-exponential terms. Comparison is made to earlier calculations of vacuum decay.
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1. Motivation. Spontaneous processes of particle
production in field theory [1] (also known as Schwinger
processes) or string/brane production [2] in string the-
ory in external fields have long been studied. Produc-
tion of eTe~ pairs by a constant electric field is the
archetypal example for the wide class of these non-
perturbative phenomena. They can generally be char-
acterized by the essentially non-analytic behaviour of
observables in the external field in the weak field limit,
that is, by the presence of e 1/Z.like terms. A closely
related class of phenomena is known as vacuum de-
cay processes [3, 4]. One of the similarities between
Schwinger pair production and vacuum decay is that
they both can be described in terms of the semiclassi-
cal approximation to the tunneling problem in quantum
mechanics. That is, the leading probability or another
observable is usually organized as e~ 5%, where Sg is
some action on some classical configuration.

The process being spontaneous means the initial
state must be a vacuum state. A generalization of the
Schwinger phenomena to the processes in which a non-
zero excitation is contained in the initial state (i.e. some
particle is present) is referred to as induced Schwinger
process. Induced processes of vacuum decay have also
been known for quite a long time [5, 6].

Recent progress in understanding induced brane pro-
duction [2] at zero temperature has lead us to the follow-
ing question: how would finite temperature influence the
dynamics of brane production/decay? This would be of
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great importance for cosmology. Brane induced decay
is apt to be viewed upon as false vacuum-decay in a
higher-dimensional theory. This task, when simplified
down to field theory level, may be presented as particle
decay in an external field. Recently decay of a magnetic
monopole was calculated by the authors of the present
paper within this string-motivated paradigm, the same
was done for a Thirring model meson decay in 2D the-
ory at zero temperature [7]. Here the results of [7] are
generalized towards the case of finite temperature.

Studies of spontaneous Schwinger pair production at
finite temperatures have a long history. A number of pa-
pers have been produced during the last three decades on
the spontaneous process of pair production in one-loop
approximation. Not claiming to have made a full review
in the least part, we cite just a few of them [8-10]. A
modern picture of one-loop thermal results is reflected
n [11]. Two-loop results are available as well [12]. On
the side of vacuum decay, the finite-temperature effects
have been thoroughly studied by [13] for the sponta-
neous case, yielding both the exponential and the pre-
exponential contributions to the decay rate. On the side
of the induced decays, the pre-exponential factor was
first calculated in [14].

However, no results dealing with temperature cor-
rections to induced decays are available so far. This was
one of the main motivations for writing this paper. We
do not attempt to describe the full physical picture of a
thermal ensemble in an external field, which would re-
quire taking into account the non-stationary processes
of back-reaction of the produced pairs upon the ensem-
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ble, screening of the field and equilibration of the system.
There will also be a competing contribution of sponta-
neous pair production as well, so the situation becomes
quite complicated. A physically reasonable observable
for such a complicated object would be equilibrium con-
centration rather than decay of a single particle. This
would be a next step to do, and is beyond the scope of
this paper. Our aim is more modest. We want to un-
derstand how one-loop corrections to Green function of a
scalar particle in an external field at finite temperature.
This yields, roughly, non-perturbative decay width, and
is a first step towards the physically meaningful prob-
lem of non-stationary pair production with back-reaction
mentioned above.

While figuring out the simplest one-loop correction
to the propagator of a scalar particle due to tempera-
ture and external field, semiclassical treatment is ap-
plied which is very close to the world-line techniques
by Dunne et al. [15, 16]. The semiclassical approach to
Schwinger processes has been suggested since Popov’s
papers, see e.g. [17].

This article is organized as follows. In Section 2.1
a brief reminder of Green function techniques is given
in the finite-temperature field theory, and the correc-
tion to the meson Green function is calculated, giving a
universally valid expression (in terms of any regime in
B =1/T). In Section 2.2 its asymptotics are studied for
B8 — oo, and comments are made on the opposite limit
in Section 2.3. In Section 2.4 the problem of leading and
sub-leading asymptotics in semiclassical calculations, as
well as on a relationship between loop resummation and
multi-instanton resummation is briefly discussed. We
conclude in Section 3.

2. Schwinger Processes at Finite Tempera-
ture. 2.1. General Techniques. A simple cubic in-
teraction of a charged scalar ¢ and a neutral x scalar in
a two-dimensional theory is considered,

1

1 *
5 Bux)’ — =m’x*> + A ¢g*x,

—_|Du¢|2 - _N |¢|2 2
(1)
where the covariant derivative given as D, = 0, +ieA,.
The masses of the fields being p and m are first kept
arbitrary, but after proceding to the semiclassical ap-
proximation it will be assumed that m/p < 1. This sit-
uation is known in vacuum decay terms as “an almost
spherical bubble” and is used, e.g. in [14]. The charged
field interacts with an external Abelian field A,,.
One can show [18] that in the coordinate represen-
tation a free Green function at zero temperature for a
particle of field x with zero charge is

oo ; _ 2
Guten = g [ e it WY
(2)

where we have omitted the pole prescription ie. For
the charged particle ¢ in the constant external field
A, = (0, Exg) it becomes

1 *®  eda
Go(z,y) = (47)2 /0 sinh(ea) X

X exp {imza — %(y —z)? coth(ea)} X

xexp{—%(yl—wl)(yo+wo)}, (3)

where € = eFE; the field is considered to be far below
the Schwinger limit m? /e >> 1. We shall refer to repre-
sentation 3 as Schwinger parametrization, and the vari-
able a — Schwinger parameter. When the temperature
is not equal to zero, the Green function is periodic in
the Euclidean time with a period 8 = 1/T, hence [11]
its generalization is organized as

eda
(2,9) Z/ (47)2 sinh(ea) %

x exp {im*a} x

X exp{—%ﬁ [(yo —z0 +n8)°+(y1 — :El)z]coth(ea)} X

Xexp{—%e(yl—$1)(y0+$0 +nﬂ)}- (4)

The sum over n naturally appears since one should take
into account all the equivalent positions separated by 3
in Euclidean time, as explained in the cited paper.

Let us consider the one-loop perturbative correction
to the Green function of the uncharged particle due to
the cubic interaction mentioned above

0G,(0,2) =
N [ EodtyGy (0,006 G )Cx(w,2). (9

We think of a one-loop diagram, represented in con-
figuration space in Figure. We stress here that our ad-
herence to configuration space representation of vacuum
polarization is not an incidental or technical detail of cal-
culation, but is rather of conceptual meaning. Namely,
as we have shown in our previous paper [7], the saddle-
point values of a; correspond directly to the geometric
parameters of the classical sub-barrier (Euclidean) tra-
jectory in configuration space. The other reason to keep
the position space is the direct relationship of the spa-
tial configuration shown in Figure to a vacuum bubble
with external lines attached to it [14] describing induced
vacuum decay on a compactified manifold.
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One-loop vacuum polarization correction to the propaga-
tor of field x in an external field at finite temperature.
Geometrical meaning of the saddle-point value @& for the
Schwinger parameter « is illustrated; 0, z,y, z correspond
to the similar variables in 5; ¢, x denote propagator type

The correction to Green function of the neutral x
field becomes then
A2e?
(4m) ™
y Z /°° doy das dasz doy &2z d?y
0

sinh(ea; ) sinh(eaz) az a4

0G,(0,2) =

Pk
X exp {iﬂz(al + ag) +im?(az + aq) —

_i(zo +kB)*  i(20 — yo + np)? } y

4a3 4a4
. 2 . 2 .
1wy i(z1—y1)?  1e0
exp{ - LIS a0 |

exp { (w0 +98)+(us — 207 cothlea) |

1€
exp {—Z[(yo —zo + ¢B8)*+(y1—21)?] coth(eaz)} . (6)
Note that due to temperature, Lorentz-invariance is ex-
plicitly broken in this expression. We may relate coor-
dinate representation of the Green function correction
to

(SG(’I'L,kl) = I(SG(O, Zo,zl) X
exp {—iwn 20 — tk121} dzg dzy, (M
where w,, = 27n /3. Calculation of this correction cor-
responds, as usually, to the shift of the Green’s function
pole
_ )
w24k +m2+ M2(n, k)’

G(n,k) (8)

however, now the shift is not Lorentz-invariant but
rather depends on both n and k separately. Whatever
complicated expression for the variation of the Green
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function one would obtain, physically relevant informa-
tion is contained in the pole shift and rescaling of the
wave function. Further on, only the pole shift will be
considered. The mass shift is the value of the M? cal-
culated at the point corresponding to the pole. For the
zero temperature theory that means that the shift is de-
termined only by the value of bare mass (and a scale).
Since in this case M?(k?) depends only on k? = k3 — k?,
one should take k2 = m2. In a theory in a compactified
Euclidean space-time it is quite obvious that the shift
should depend on n as M?(n, k;), where n and k; such
that w2 + k2 +m? = 0. For the n-th Matsubara mode the
pole shift is approximately related to a Green function
variation as

4722

2
7 ) 8G (ky1,n)

2_ 2, 1.2
om,= — (m + ki +
w2 +k2+m?2=0

(9)

Moreover the on-shell condition does not have a solu-
tion for arbitrary k7 since w,, is determined by the dis-
crete variable n. Note again that generically every sin-
gle mode is renormalized in its own way. One can eas-
ily understand that due to Lorentz symmetry violation
by compactifying the Euclidean time direction there is
no invariant mass anymore. Rather, if some physical
quantities related to thermal theory are of interest, the
partition function Z(8,u,...) has to be calculated, at
some values of chemical potential y and other external
potentials. Then some statistically averaged reasonable
quantities have to be found?, say, n; = 82 /Op;, which
is the equilibrium concentration of particles of the i-th
type.

Therefore, 9 is understood merely as a convenient
way of writing down the propagator variation. How-
ever, there is a range of parameters within which it is
still possible to preserve the meaning of this quantity as
the mass shift of the particle. This range is the limit
of small temperatures or large 8. In this case on-shell
condition can be solved even for k; = 0, since for suffi-
ciently large 3 the value of m8/2x differs from an integer
slightly. So one can treat the imaginary part of the mass
shift for such n and k; = 0 as the decay rate of the par-
ticle in the external field with a temperature not equal
to zero.

Evaluating elementary integrals, one gets a formal
expression for the mass shift

2)The authors are extremely grateful to Professor H. M. Kleinert
for a discussion on this point.
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X : X
) V/sinh(e; + a2) cosh(ar — as)

X exp { dnti X
€3
(r tanh(a;)—s tanh(as))? sinh(2a; ) sinh(2a3)
4 sinh(a; + as) cosh(a; — as2)

+ir? tanh(al)} X

2
exp { [s tanh(az) + N—(al +a2) +

| 4rin? 1 ]} (10)

€32 coth(ay) + coth(az)

By using the approximate on-shell condition n =~
uB/2m and Poisson resummation formula

Y fm)= Y J(2m),

n=—oo n=-—oco

-/ " e,

this expression can be written down in two equivalent
representations. Now and further we retain its imagi-
nary part solely, rather then the full (possibly divergent)
pole shift in the propagator. These two representations
are

where

)\2

doy das e™ 22 (a1+az)
\/smh a1 + as) cosh(a; — a3)

e N 4im? A ,
X -
P € coth(al) + coth(ag) (32 (o=20)

X

8_—00

and

2 +o p (a1+a2)

—Im)\— Z /daldage
sinh(a; + a2)

8 _@ B ief?s?

€ coth(ayg) + coth(az) 4A

- 27risso} ,
(12)

where _ sinh(a; + ag)

cosh(a; — as)’
_ mp 1
0= 2 tanh(az) coth(ay) + 17
The sums above can formally be converted to Jacobi
theta-functions, however, that would not be of much

use, since the integrals over Schwinger parameters would
then get out of feasibility. On the contrary, one can do
the integrals in Schwinger parameters by saddle-point
method for each term in the sum, provided saddle-point
works at all. Then in principle one could try to do the
sum exactly.

When dealing in such way with 1-dimensional saddle-

point integrals
/ dzY " et (2

it will be necessary to restrict the domain of applicabil-
ity of this approximation by imposing the conditions in
saddle-point values z = Z,, for the nth function f, [19]:

1f5 z0) P2 > 153" (21)], (13)
17 (20) P2 > f1" (z), (14)
Im[fo(Z0)] > Im[f1(z1)]. (15)

Condition 13 ensures the possibility of doing saddle-
point approximation for the zero mode. It checks
whether the next-to-leading order terms in the decom-
position of fo may be neglected. Condition 14 provides
the same check for the first mode. To ensure dominance
of the zero mode over the first one, we impose 15.

For multi-dimensional expressions the criteria of
saddle-point method applicability become more compli-
cated. Namely, instead of 13 or 14 one must require that

o3 f 1
== - PiuPimPren———= <1, 1
02020z, A5 gm Sk VA AmAn < (16)

where ); are eigenvalues of second derivatives ma-
trix 82 f/02;0z;, and P;; is diagonalisation matrix for
0% f /82;0z, summation implied over i, j, k, [, m,n. Fur-
ther it will be examined whether these conditions are sat-
isfied for a particular saddle-point function under con-
sideration.

2.2. Limit 3 — oo. The expression 12 seems to
be an appropriate representation for the I' in the case
B — oo, since even the naive condition of the saddle
point method applicability fails for 11, namely the fac-
tor in the exponent 1/e3% becomes small. So, let us take
12 and make sure that it indeed corresponds to the low-
temperature limit. It is supposed that the saddle-point
is a symmetric point a3 = a; = a. This is possible
due to having particles of identical mass in the internal
lines. Since the saddle-point values of Schwinger proper
times, as shown in [7], correspond to the geometric pa-
rameters of the classical Euclidean loop configuration,
only a symmetric configuration is expected to be the
physically relevant solution of saddle-point equations.
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The full “decay width” is a sum over Matsubara con-

tributions
(o]
I'= Y T,

n—=—oo
It is expected that the higher the mode, the more sup-
pressed it is. It will be shown below by means of saddle-
point integral that this is indeed true for the zeroth and
first modes. One can trivially see that the zero Matsub-
ara mode exponential is

identical to that of [7]. This function is extremized for
a = g given by

cosh(ag) = m/2p.

For simplicity the case of a very light external particle
(“almost spherical bubble”) will be considered, that is
m/pu < 1. This is indeed the case of interest, as for a
particle with m > 2y the process will become perturba-
tively allowed. Checking the conditions of saddle-point
applicability 16, one gets

3
—_ 1.
NN <
This condition is satisfied in our setting, due to having
a sufficiently small field m?/e > 1, imposed from the
very beginning for the applicability of the saddle-point
method (there always must be a significant exponential
suppression). Thus the leading order (zero dual Mat-
subara mode) contribution to the sum 12 is

4 e fo(@)

V/det;,; 9;9; fo

In the leading order in both small parameters m/u and
1/€3? one obtains

Ty ~

4 4
det 9;0; fo = L2,
1,] €
hence
A2
Lo ~ m—2ue € (17)

in agreement with [7]. The next-to-leading term is given
by the modes with s = +1. In the limit €32 > 1,4 > m
one obtains

2 2

I 3
= 20— —————.
far € @ 4 sinh 2«

That amounts to the saddle-point equations

cosh 2a = 4p% /€232,
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solved by
o~ mifd

in the said approximation. Collecting all the terms, one
gets the first correction

Ty~ XN (18)
me232

It can be seen that the dependence on a temperature is
essentially non-perturbative.

Upon calculating the second and the third derivatives
of fi1, one gets the following inequality as the condition
for saddle-point method applicability by evaluating 16

16u2/8%/% <« 1, (19)

which can be rewritten as

2\ 5/6
B> i (%) . (20)

Obviously this condition is fulfilled provided that the
temperature is high enough. The value of the exponen-
tial f1; on the saddle point in the leading asymptotics
is

fi1(a0) = 6%

In the aforementioned limit the s-th mode will be sup-
2 2

pressed like e €% "¢, The condition for the effective sup-

pression roughly is

B> pl/e,

which is satisfied for 3 — oo limit. Thus one makes
sure that the chosen form of the series 12 indeed suites
low-temperature region description.

2.3. Limit 3 — 0?7 Naively, it seems that one can
easily perform similar calculations for the opposite case
of extremely high temperatures. Just using the dual rep-
resentation for the decay rate 11 and applying the saddle
point method one could get the answer. However, this
is not necessarily so for several reasons. In both rep-
resentations for I' the pole has already been chosen by
setting k2 = 0. It is easy to see that it is impossible
to set k7 = 0 and find such an integer value n which
would satisfy the on-shell condition 472n?/32 + m2 =0
for small 8. So, in order to fulfill the on-shell condition
and, thus, to find the proper expression for the rate in the
limit of high temperature, one should keep k? non-zero,
which reflects violation of Lorentz symmetry by intro-
ducing a temperature. It is also worth mentioning that
in this case, since one cannot get rid of the dependence
on n, it is absolutely necessary to consider the renormal-
ization for each Matsubara mode separately. The result
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certainly cannot be interpreted then as a high temper-
ature decay rate of the initial particle. It is just some
correction to the Green function, the physical meaning
of which is not well defined. It may be meaningful in a
compactified theory rather than in a thermal one. Intu-
itively one expects that at high temperatures tunneling
term e~ (instanton contribution to the semiclassical
expression) will be dominated over by the over-barrier
term e AP (“sphaleron” contribution). However, in the
saddle-point analysis performed by us, the “sphaleron”
term has not appeared in the limit 3 — 0. Thus no final
judgement is passed on the applicability of saddle-point
method at 8 — 0, but it is doubtful that it can work as
directly as it has worked for 8 — oo.

2.4. Resummation Hierarchy. The values of &
given above are, of course, not unique. The true solu-
tion to the saddle-point equation is a series of roots like,
say, & = *iarccos(m/2u) + 2win, n € Z. Therefore,
an additional resummation to include all these roots is
to be performed in principle. It is not necessary from
a practical point of view, the terms in the series being
suppressed by the factor eH*/ €, however, this resum-
mation is noted in order to stress the similarity of the
saddle-point configuration, on which the 1-loop integral
is essentially calculated, and the world-line instanton
configuration, proposed in the semiclassical approach by
Dunne et al. [15, 16].

3. Conclusion. An example of a calculation of the
one-loop thermal corrections to the propagator of a neu-
tral scalar particle interacting with a charged one in an
external field has been given. We have found the LO
thermal correction to decay width in the semiclassical
limit for 8 — oo, in the case of an “almost spheri-
cal bubble”, i.e. m/p < 1, far below Schwinger limit
m?2/e>> 1, up to its preexponential factor

N e
oT ~ me e . (21)

Thus the result of [7] has been generalized towards
thermal/compactified backgrounds. Of peculiar interest
would be extension of the presented semiclassical tech-
niques to strings and branes in thermal backgrounds.
Our result supports that of Garriga [13]. Namely, the
technique of Garriga does not intercept any correction
for vacuum decay in two dimensions at low tempera-
tures, whereas we give an estimate of this correction,
and point out that due to its rapid decrease it can’t have
been noticed in the framework of Garriga’s method.
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