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We study theoretically the electronic transport through a single impurity in a repulsive Luttinger liquid
(LL), and find that above a threshold voltage related to a strength of the impurity potential the direct current T
is accompanied by coherent oscillations with frequency f = I/e. There is an analogy with Josephson junctions:
the well-known regime of power-law I-V curves in the LL corresponds to damping of the Josephson current
below the critical one, while the oscillatory regime in the LL can be compared with Josephson oscillations

above the critical current.
PACS: 71.10.—w, 71.27.+a, 71.45.Lr

Basic electronic properties of three-dimensional (3D)
solids are usually well described within Landau’s Fermi-
liquid picture where low-energy excitations are quasipar-
ticles that in many respects behave like non-interacting
electrons. This is not the case in 1D systems where
the usual Fermi liquid picture breaks down. In one di-
mension single-electron quasiparticles do not exist, the
only low energy excitations are charge and spin collec-
tive modes. Such a state called the Luttinger liquid
(LL) is an alternative to Fermi liquid in 1D conduc-
tors (for a review see Ref. [1]). There are different
realizations of the 1D electronic systems. The exam-
ples are semiconductor-based quantum wires in which
dimensionality of the conduction electrons is reduced by
dimensional quantization [2], metallic linear chains on
Si surfaces [3], carbon nanotubes [4], conducting poly-
mers [5], and quantum Hall effect edge states [6]. There
are also evidences that effects related to inter-electronic
interaction can be taken into account in terms of LL in
strongly anisotropic quasi-1D conductors [7, 8] where the
LL state can be stabilized by defects [9, 10] or by forma-
tion of the charge density wave gap induced by electron-
phonon coupling [11]. The transport properties of the
LL are also very different from those of the Fermi liquid.
In particular, isolated impurities form effectively large
barriers in 1D systems with repulsive inter-electronic in-
teraction and strongly suppress the current which leads
to a power-law dependence of conductivity on voltage
and/or on temperature [12—14]. This effect can be de-
scribed in terms of macroscopic tunnelling between dif-
ferent minima of a periodic potential describing inter-
action of the electronic system with the impurity. The
periodic potential is associated with Friedel oscillations
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induced by impurity. The Hamiltonian describing in-
teraction of the LL with the impurity in spinless LL is
expressed in terms of the bosonic (plasmon) displace-
ment field (¢, z) at the impurity position z = 0 [1]

™

H;, = —E/deiJ(m) cos 28, (1)

where

Wi = / %”e%k”W(x),

W (z) is the impurity potential, and a ~ k' is a small
cut-off length.

The particle density operator reads [1]

p= _1o% + ke cos (2kpz — 29),
w Oz ™

where the first term describes smooth variations of the
particle density and the second one yields a rapidly os-
cillating part. Fluctuations of the field & make the ex-
pectation value of the second term in the free LL equal
to zero. However, fluctuations of & are finite at the im-
purity position, and this results in Friedel oscillations,
i.e., in 2kr modulation of charge density decaying with
distance as |z|~%¢, where K, is the LL parameter mea-
suring the strength of the interaction: K, < 1 for re-
pulsive and K, > 1 for attractive interaction, so the
larger electronic repulsion results in the slower decay of
the oscillations. As the current operator in the LL reads
I= (e/7)8;®, the current flow through the impurity
implies an increase of & with time, which corresponds
to a shift of the Friedel oscillations by the current. This
illustrates the origin of the strong suppression of con-
ductivity by impurities in the LL.

Power-law I-V curves are induced by tunneling be-
tween minima of a washboard potential (1) slightly in-
clined by an external bias, so that an increase of the
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phase by 7 corresponds to a transition of one electron
through the impurity [1]. This resembles Josephson
junctions where similar fluctuations result in a finite
voltage drop at a current below the Josephson critical
current, I < I. (for a review see Ref. [15]). However,
in superconducting junctions, at I > I. the Josephson
oscillations start, this corresponds to an increase of the
superconducting phase difference with time in the wash-
board potential when it is inclined to an amount ex-
ceeding the critical value. Below we show that a simi-
lar regime must occur in the LL with an impurity pro-
vided the applied voltage exceeds a threshold value cor-
responding to the slope at which the system can roll out
from the minimum of the washboard potential. Above
the threshold the current is larger than the tunneling cur-
rent in the sub-threshold regime of power-law I-V curves,
and the current flow is accompanied by oscillations with
the washboard frequency f = I/e.

For brevity we consider first the response of a spin-
less repulsive LL to an external time-independent volt-
age using the Tomonaga-Luttinger model [1] with short
range interaction between electrons characterized by a
constant value of K, < 1. The short-range interac-
tion describes gated quantum wires where the long-range
part of the interaction is screened by 3D gate electrodes.
At the end we will discuss essential modifications in-
duced by spin and the long-range Coulomb interaction.

We start from the Hamiltonian

H =Ho+ H; + Hg,

that includes the standard bozonized Tomonaga-
Luttinger Hamiltonian

. 1
Hy = / dwh’;’F [H2 +

> $)?
ﬂ_ng (6 ) ’

the impurity part (1), and the term with an external
electric field,

Hp = —/dxfEé.
™

Commuting & with the Hamiltonian we derive the equa-
tion of motion for the Heisenberg operator

e

Dylé(t,z) = h[2Wisin2<I}0(t)5(m)—E], 2)

s

where &¢(t) = &(¢,# = 0), and the operator in the left-
hand side is the inverse free bosonic Green'’s function of
density fluctuations. For the standard LL it reads

Dal = (v263 — 6?) /T,

where v = vr /K, is the velocity of plasmons. This oper-
ator does not contain damping. If one takes into account
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coupling of electrons to a dissipative bosonic bath (to
phonons or to density fluctuations in a metallic gate)
then a finite damping appears, and the Fourier trans-
formed retarded Green’s function acquires the form [16]
Y

D= ey =0 O
As it was shown recently the damping suppresses
soliton-like fluctuations and reduces power-law conduc-
tance to an exponential one [17].

Using Eq. (2) with proper boundary conditions at
the contacts one can express ®(¢, z) in terms of its value
at the impurity site. We apply boundary conditions [18]
derived for a wire adiabatically connected to ideal Fermi-
liquid reservoirs at £ = +L/2 with voltage difference V.
Then by means of the Fourier transformation we finally
obtain the equation of motion for the operator &g (t) at
the impurity position.

odot)+ £ [ dtz(t— ) sin2o(t) = 77,
0

2() =

/ dweﬂ.wt W,f(,z(l —iK,tan %)’ ()

2 (K, —itan SL)

Vw2 +iwr - w
go=——"—, K,=K, —,
v w +w

where I = e? Evp/mhv is the time averaged macroscopic
current in the channel. Eq. (4) is supplemented by rela-
tion between time averaged values

I=GV -Vi), Vi=2Wisin2®o(t));, (5
where V; determines the time-averaged voltage drop at
the impurity, and conductance G is given by

G'=G,'+G;', G,=évp/rhvL,  (6)
where Gy = €?/h is the conductance quantum per spin
orientation, and G, is the conductance related to damp-
ing in the clean part of the wire. It is interesting to
note that though single-electron picture is not applica-
ble to the case of LL, the expression for G, corre-
sponds to the Drude relation for non-interacting elec-
trons, o = ne?r/m, where 7 = 2/v. Indeed, for a sam-
ple of length L and cross-section area S the electron
density reads n = kr/2mS. Then

which is in agreement with (6).
As we want to concentrate on conduction through
the impurity and not on the problem of contacts, we will
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consider the case of small enough damping, v < w, and
a long channel, L > I, = v/v. This allows to neglect
reflections of current pulses generated by the impurity
from the contacts and to substitute tan goL/2 — i. Then
the kernel Z simplifies

dw .. [ w
Z(t) :WiKp/.%e t m, (7)

which at v = 0 gives Z(t) — W;K,6(t). Note, however,
that at any small but finite damping [ Z(t)dt = 0, so
the damping cannot be neglected at w = 0.

Remember that &, (t) in (4) is an operator, so it is
not easy to solve this non-linear equation. So we extract
the expectation value ®¢(t) = (o), thus & = &, + 49,
where (6&) = 0, and ®,(t) satisfies the equation

6t§0 (t)"‘%/dtlZ(t—tl)(COS 25@(7:1))5111 2@0(t1):gj
0
(8)

To solve this equation one must calculate (cos 26®) first.
In calculation of this expectation value we will ignore
the soliton-like fluctuations that are responsible for sub-
threshold tunneling, but take into account Gaussian fluc-
tuations that substantially reduce (cos 20®). These fluc-
tuations can be treated by means of the self-consistent
harmonic approximation.

But before treating the general case we discuss solu-
tion in the simple limit of strong inter-electron interac-
tion (K, — 0) when Eq. (8) can be easily solved analyt-
ically. In this limit fluctuations of the displacement field
at the impurity are small, (cos26®) — 1, and $(t)
can be treated as c-number. When V < Vp = 2W;
we find from Egs. (5) and (8) a stationary solution
2®¢ = arcsin(V/Vr) with zero current I = 0 but with
non-zero voltage drop over impurity. Note that we ob-
tain that the current is zero in the sub-threshold region
because we neglected solitonic fluctuations resulting in
power-law I-V curves.

At V' > Vr the solution is oscillatory with fundamen-
tal frequency f = I/e

. /e
VI + 2 + Iysin(2n T /e)t’

where Iy = GoVrK,. Eq. (9) determines the current at
the impurity site, I(t,z = 0) = ed;®o(t)/m. Current at
the clean part of the channel calculated from Eq. (2) is
equal to I(t,z) = e0;Po(t — |z|/v)/7 at |z] < 1, and
I(t,z) = I at large distances from the impurity.

0;®(t) 9)

For the time-independent voltage drop at the impu-
rity we obtain

=7
iy YE+h -1 (10)

= A

Thus from (5), (9) and (10) we see that the oscillatory
regime starts at V' > Vp. The current at the impurity
consists of narrow pulses of height 2Iy at I < Iy and
transforms into the Ohmic current accompanied by har-
monic oscillations of amplitude Iy at I> I,. We con-
centrate on the case of long conducting channel, L > [,
when the static I-V curve starts at voltage V = Vr and
monotonously approaches the Ohm’s law I = GV at
large voltages. If the conducting channel is relatively
short so that contribution due to damping in the clean
part of the wire to the conductivity G is small, then ac-
cording to (5), (6) and (10) the IV curve in the region
of small current can be of the S-shaped form.

Now we consider the case of finite values of K.
Mean square fluctuations (§$2) can be calculated from
Keldysh Green’s function DX = —i({§&(t),68(t')})
at t = t'. This function can be expressed via retarded
and advanced Green’s functions

DR = wif[=(t — ¢)([68 (), 68 (¢')]-)

by relation DK (t,#') = DE(t,¢')f(t') — f(t)DA(t,t"),
where Fourier transform of f is related to the distri-
bution function of bosonic excitations N(w), f(w) =
= 142N(w). In the equilibrium state N (w) is the Planck
distribution function. At low temperatures, smaller than
all characteristic energies of the system, one can ne-
glect contribution of thermally excited excitations, then
f(w) = sign(w) and D¥ can be expressed via the re-
tarded and advanced functions. Note that acting in this
way we neglect the effect of non-equilibrium distribution
of bosonic excitations.

Now we derive equations of motion for the retarded
and advanced Greens functions of fluctuations. This
can be done in a standard way multiplying Eq. (2) by
&(t',2') from the left and from the right, and combining
them in order to obtain corresponding Green’s function
after averaging. Then using the Fourier transformation
we express Greens functions at the impurity site and get
rid of the coordinate dependence of Green’s function. Af-
ter that by means of (8) we subtract expectation values
and use the self-consistent harmonic approximation

sin 268 — (cos 268)26% = e~2(0%) 254,

and arrive, finally, to close equations of motion for
DE(A) . As we will need this equations at frequencies
larger than the small damping constant we neglect v
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and employ Z(t) = W;K,6(t —t1). Then the equation
for DE reads
2 K
8, D(t, t')+§W,-K,,C(t)DR(t, t'):—%&(t—t'),
C(t) = cos 2®(t;)(cos 269 (t1)). (11)
This equation and the similar equation for the advanced

Green’s function can be easily solved analytically. The
solutions are

DR(A) — _Wfpg[i(t _ tl)]e:szW;Kp f:, C(tl)dtl_ (12)
This gives us for (§8?) = 1 DK (t,1)
(58%) = Ky /Oo dh sewik, [ Ot ta)dts, (13)
2 0 t]_

Eq. (13) must be solved self-consistently with (8) and
(5) in order to find (§%2) as function of cos2®,. First,
we calculate the threshold voltage. In the sub-threshold
region C does not depend on time. Then calculating in-
tegrals in (13) and using definition of C' (11) we obtain

. K A
582y =2 |
OF) = 0= K,) " 2K, cos 280’

(14)

where A ~ ppv is a large cut-off energy. Note that in
accordance with our previous statement we found that
fluctuations vanish at K, — 0. Substituting (14) in (5)
we obtain equation for ®¢ in the sub-threshold regime

oW ( 2K ,eW; cos2®,

h ) "sin2® =V.  (15)

It has solution at V < Vi with

2K§/2€Wi

Vi = 2W; ( N ) 1-K,. (16)

We see from (16) that the finite threshold voltage exists
provided K, < 1, and this is in accordance with the
condition that the impurity is a relevant perturbation in
case of repulsive inter-electronic interaction. Note, how-
ever, that fluctuations were taken into account in the
self-consistent harmonic approximation that does not
work at K, — 1.

It is not simple to find (§%2) analytically in a gen-
eral time-dependent case, but this can be done easily
when the voltage slightly exceeds the threshold value
and the time-independent part of the current is small,
I « Iy. Then &, increases with time in a step-like
manner spending the most part of the oscillation period
e/I near the value corresponding to maxima of C(t) and
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passes rapidly other values of C' during short time in-
terval ~ 1/ V/TI, that gives small contribution to the
period. Therefore, in the most part of the period one
can use (14) with time dependent value ®¢(t), and self-
consistent solution of Eqs. (13) and (8) in this limit
yields equations similar to (9) and (10) with the value
of the threshold voltage Vr (16).

So far we considered the spinless LL. In the spinful
LL impurities partly violate the spin-charge separation,
and the impurity Hamiltonian contains the spin phase
field [1]. This leads to modification of the results, in par-
ticular, of the threshold voltage. For a spin-independent
electronic repulsion Eq. (16) is substituted by

1+K,
2 1-K, 1+KKP
Vi = V2W; (—ZV> K,

2(1 - K,).

Now we discuss the case of the long-range Coulomb
repulsion. It can be taken into account in terms of mo-
mentum dependence of K, [19]

K;? =1+ a’Ko(qd), a® =4e’/rhupe,

where the McDonald function originates from the
Fourier transformation of the Coulomb potential in a
wire of diameter d, € is a background dielectric con-
stant. In case of the long-range interaction the impurity
is a relevant perturbation at all values of the parameter a
describing the strength of the repulsion. This is evident
from the flow equation demonstrating that the impurity
potential scales to infinity under renormalization

-1/2
1—(1+azln%) ]Wz

The McDonald function is substituted here by its limit-
ing logarithmic form.

The momentum dependence of the interaction para-
meter modifies equations (4)—(8). With the logarithmic
accuracy and for the case of negligible damping we find
that Z(t) (7) must be substituted for

dWw;
di

2avF

d

w

_ dw —iwt
2 —W,Kp/27re \/(w+i1/)(1+a2ln—d)'

|w]

Though it is not simple to solve such equations ana-
lytically we find that they do not result in important
qualitative difference from the case of the short-range in-
teraction with constant K,. One of the most important
distinctions is that suppression of (cos 26®) by fluctua-
tions is smaller than in the Tomonaga-Luttinger model,
and this results in the smaller effect of fluctuations on
the threshold voltage. Calculating again (§%2) by means
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of Keldysh Green’s function we find in the sub-threshold
regime

ao, 1 [ dw
(6®%) = = . (n
2Jo wy/l1+a?ln® +2(e/R)W;C
Assuming a moderate strength of the Coulomb repul-
sion when a is of the order one, and taking into account
that the argument of the logarithm in (17) is large, we
estimate (§®2) with the logarithmic accuracy. Then we

obtain .
2y =2 fIn—% .
(0%%) a\ " edWiC

Here we neglected the contribution from high-energy
cut-off, assuming that In(wg/A) ~ In(a/krd) is not a
large value. This gives an estimate for the threshold

field 0
e
Vi = 2Wiexp [ —=, /1 ,
T exp( a n edW,-)

where, again, the argument of the square root in the
exponential function is given with the logarithmic accu-
racy.

In conclusion, we found that above the threshold
voltage Vr the current through an impurity generates
coherent oscillations with the fundamental frequency
f = I/e. There is some analogy between this effect
and the Josephson effect in superconducting weak links.
We considered the case of the time-independent applied
voltage. If in addition there is also an alternating com-
ponent of the applied voltage with frequency fo then
an analog of the Shapiro steps observed in Josephson
junctions will appear on the I-V curves. In our problem
these are the steps of a constant voltage, the fundamental
step being located at the current value I = efy. Char-
acteristic frequencies of the oscillations induced by the
time-independent voltage are determined by the strength
of the impurity potential. This potential can be induced
either by impurity atom or by an artificial imperfection,
e. g., of the shape of the conducting channel. So in
semiconducting quantum wires one can prepare an arti-
ficial impurity potential of small magnitude correspond-
ing to radio frequencies. On the other hand, typical
values of the potential induced by impurity atoms, say,
by the shallow impurities, can be of the order of several
meV, and depending on the strength of the electronic re-
pulsion the characteristic oscillation frequency may fall
into the gigahertz or terahertz frequency regions. Direct
application of our results to real systems is limited by
voltages smaller than distances to other electronic sub-
bands. Note also that the results are quite sensible to

boundary conditions, therefore, experimental technique
for observation of the effect depends on coupling of the
1D system to 3D environment.
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