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In this work we analyzed the model by M. A. Chuev recently published [JETP Letters 85, 611 (2007)].
Near the blocking temperature we show that the anisotropy corrections always lead to a lower magnetization
than the equilibrium value, contrary to the findings in Chuev’s work. Also we show that the asymptotic high-
temperature limit of Chuev’s model is not in agreement with the expected thermodynamic limit. Moreover,
even at low-temperature only a careful implementation of this theory can guarantee arriving to the correct
result, avoiding some wrong conclusions in Chuev "s work.

PACS: 61.18.Fs, 61.46.+w, 75.50.Tt, 75.60.Ej

Recently Chuev [1] presented a generalization of
the Stoner-Wohlfarth (SW) model to describe the ther-
mal effect on the dynamics of an ideal non-interacting
nanoparticle ensemble. In the model, Chuev incorpo-
rated a thermally-assisted transition-probability into the
SW formulation [2] (Eq. (2) of reference [1]). However,
his low temperature (T') implementation is incorrect and
from these results he arrives to a serious conceptual er-
ror. Besides, the model is not applicable to the high-T
limit, because it does not follow the expected thermo-
dynamic behavior.

We want to start the treatment of the Chuev model
showing his basic assumptions. In the model, based on
the SW one, the magnetic energy of a non-interacting
single particle is given by:

E = —poH singp — Kcos® (6 — ¢), (1)

where K is the magnetic anisotropy constant, 8 is the an-
gle between the magnetic field orientation and the easy
axis of the particle, and ¢ is the angle between the mag-
netic moment p and the external field H. The thermal in-
formation is introduced considering the Néel formula [2]
of the probability of transition (per unit of time) from
one minimum to the other:

s (F,0,0) = 22 3 (P50, ()

i=1,2

where 8 = 1/kp T (thermal energy), po is a constant
characteristic for each material that is weakly dependent
of the temperature and is typically of 10° — 10! [1/s],
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Ema* and EPI® are the energies of the maximum and
minimum respectively determinate by eq.(1).

The temporal change in the non-equilibrium popu-
lations of the local states w; (t) is determined using the
master equation (eq.(6) in reference [1]):

dwl,z (t)

0t = *[pa1 (t)ws (t) — pr2 (H)wr (2)].  (3)

From these expressions it is possible to simulate the
field cooling (Mr¢) and zero filed cooling (Mzpc) mag-
netizations, assuming a constant temperature sweep ra-
tio.

Before continuing, we want to remark that this model
includes the information about the thermal inversion of
the magnetization as well the temporal evolution of the
population at each minimum by the expression (2) and
(3) respectively. However, this model does not consider
the effect of the thermal fluctuation in each minimum of
eq.(1). We think this omission may be not relevant at
low-T', as the magnetic moment orientation probability
away from the minima is negligible. However, this sim-
plification can not be maintained at high-T" where the
thermal fluctuations dominate.

Figure 2 of reference [1] shows the simulation of PFC
(MFp¢), ZFC (Mzpc) and NFC (negative Mpc). The
dot line corresponds to the Langevin function. About
this figure Chuev said “...the magnetization in the PFC
and NFC regimes is larger and smaller than the equilib-
rium value, respectively.” In this observation we found
two serious conceptual errors. The first one is that Mpc
below the blocking temperature, Tp, is always lower
than the equilibrium magnetization value. To illustrate
this we simulated (Fig.1) Mpc and Mzpc using the
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Fig.1. Mpc and Mzpc simulated using the Chuev model.
Increasing the temporal windows the point A reaches the
thermal equilibrium increasing the magnetization

model described in reference [1], considering the angu-
lar average over the easy axes orientation as pointed out
in eq.(11) of [1], for different temporal windows 7, .

It is possible to see that the point labeled A is not in
thermal equilibrium for 7., = 10%s. However, increasing
the temporal window (7, = 102°s) the system reaches
equilibrium at the given temperature, increasing its mag-
netization (A’), contrary to Chuev observation. We can
also observe that Mpc is almost constant below Tg,
as expected for an ideal ensemble of identical and non-
interacting nanoparticles. Chuev calculations shown on
Fig.2 of reference [1] does not follow this behavior, in-
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Fig.2. Full line: Mpc and Mzpc simulation using the
Chuev model. Dash line: low temperature approximation
(see eq.(4)). The dots correspond to the Langevin function

creasing the magnetization value with the temperature
decreasing below T'g.

The second error that we mentioned before is that
the Langevin curve does not represent the thermal equi-

librium condition in a system which has a not negligi-
ble anisotropy, even considering an easy axis random
distribution. Although Chuev does not explicitly men-
tion this, fig.2 and also the commentary associated to it,
indicates that this is the intention of the author. We
will return to this point later, when we consider the
high temperature limit. Now we want to show that the
low temperature limit, assuming thermal equilibrium, in
Chuev’s model has a different behavior than the associ-
ated to the Langevin equation. We consider the case:
K > poH > kT (uo is the magnetic moment of the
particle). In this approximation we found that the ther-
mal equilibrium magnetization (assuming that the tem-
poral window is large enough for arriving to thermal
equilibrium) in the Chuev model (considering the aver-
age over the easy axis random distribution) follows the
expression:

L 1 puH 3, _,
EVN x4 4 2 1+2x)—1 4
(L)~ g+td+ 2 avam-1, @
where x = p H/kg T.

On the other hand the correspondent expression of
the Langevin function is:

1
<ﬁ> ~l—=-+2e 2, (5)
Ko T

In Fig.2 we show simulations of Mpc and Mzpc
made using the Chuev model, the low temperature ap-
proximation obtained in (4) and the Langevin function
at very low temperatures, in order to illustrate our con-
cept.

We can see in this figure the clear difference in the
low temperature range, assuming thermal equilibrium.
The temporal window used was 7, = 102%Cs, large
enough to get the system in the superparamagnetic reg-
imen yet at very low temperature. We believe that the
origin of the erroneous result shown in Fig.2 of [1] is
due to the initial conditions imposed by the author in
equation (9). Only the initial condition of the Mzp¢ it
is correct because is true that the initial magnetization
is null for an ideal no interacting nanoparticle system.
The others (1 and —1) are wrong because they depend
of the applied magnetic field. In fact, it could be possi-
ble, in theory, to have initial condition 1 or —1, but in
these cases the field should be so strong (erasing all en-
ergy barrier effects, and then getting only one minimum)
that the PFC and NFC would not exhibit irreversibility.

We consider now the high temperature behavior in
Chuev model. In first place, it is important to know
which is the expected asymptotic magnetic response in
the high temperature limit, ie. when kT > K, po H.
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In this treatment we will assume that, for a given exper-
imental temporal window 7,,, the temperature is high
enough to let the magnetic moment oscillate between
both energy minima. In this condition the system is in
thermal equilibrium and the complete statistical infor-
mation is contained on the partition function Z [3]. Ac-
cording the treatment given by the Statistical Mechanics,
the value of the magnetization, for a given H and T is
given by the expression:

(w) = % /QuH e PEO), (6)

where p g is the magnetic component along the external
magnetic field orientation, F (Q2) represents the magnetic
energy (see eq.(1)) for a given set of 2 parameters. In
this case 2 space is (6, p) magnetization orientation an-
gles, and the integration is carried over all possible an-
gles. Z is the partition function given by:

7= /Q e BE@), )

It is not possible to obtain a close analytical expres-
sion for (7). But we can expand this expression in the
Taylor series on the high temperature approximation.
Making this and integrating over all anisotropy angles
(assuming a random orientation distribution) as is indi-
cated on eq.(11) of [1], we finally obtain:

p\ jz_ 2 2w 8K
w/ 3 45 945 10125

This means that the high-T' description, should fol-
low eq.(8), as found on references [4,5]. In the expres-
sion (8) we can see that the first three terms on the
right hand member correspond exactly to the Taylor ex-
pansion of the Langevin function. The last one corre-
sponds to the correction introduced by the anisotropy
effect. We can see that this term (quadratic in K) is
negative, then in the high temperature limit, the magne-
tization of a given nanoparticle system (in thermal equi-
librium) is always lower than the associated Langevin
function. Morower, we want to point to the fact that,
in the high temperature limit, the magnetization goes
asymptotically to zero as the Langevin function. Re-
turning to the Chuev model, we can see in eq.(20) of
[1] the high temperature limit (rewritten in terms of the
normalized magnetization):

I r poH
— ) &= . 9
(o) =5+ 5% * ©)
The first term of the right of (9) is in accord wich

(8)- However, the second one is indicating that the mag-
netization does not go to zero in the high-T limit, i.e. it

B+... (8
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does not satisfy the thermodynamic limit. This is a seri-
ous problem for this formulation, and for this reason we
have serious doubts about the results shown in fig.3 and
4 of [1] as well as the conclusions associated to them. In
our fig.3 we show the normalized magnetization obtained
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0.003 equation (8)

(Whg)

0.002

0.001

0

T (K)

Fig.3. Limit of high temperature behavior for the Chuev
model (full dot) and Langevin function (open dot). The
solid line corresponds to eq.(8)

from the Chuev model, the Langevin function, and the
high-T behavior described by our eq.(8). The large tem-
perature scale has not a physical sense, and this choice
is only to show the high-T asymptotic behavior. We can
see that the model presented in [1] predicts erroneously
that the high-T magnetization is not null. Note also that
the Langevin function describes correctly the expected
behavior in the high-7" limit and the correction of the
anisotropy is very small (falling as 1/ T®).

We want to return to our previous affirmation, in
the low-T' regime discussion, that the Langevin curve
does not describes the thermal equilibrium magnetiza-
tion. This is evident for the high-T regime in eq.(8),
although the correction is very small. Unfortunately, we
can’t make the same treatment in the deduction of eq.(8).
However we can consider the low anisotropy (K — 0)
and low-T' (z — oo) limits. In this case, the equilib-
rium normalized magnetization obtained from eq.(6), af-
ter performing the angular anisotropy average (eq.(11)
in [1]) results:

1 4K?
<ﬂ> RNl——-— ————. (10)
Ko z 15 (u H)

In this expression we see that the anisotropy correc-
tion appears as -K?, like in the high-T' limit (eq.(8)).
The low anisotropy contribution is important, and it is
expected that in the strong anisotropy case it can not
be negligible.
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In conclusion we have shown that the model pre-
sented in [1] is not correct on the high-T' limit be-
cause it is inconsistent with basic Statistical Mechan-
ics arguments. In addition, the incorrect low temper-
ature implementation led Chuev to conceptual errors.
In despite of the above, we believe that the model in-
troduced in [1] could be accurate on a low temperature
limit (K, po H > kg T') and a careful implementation,
considering plausible physical conditions, can describe
systems in which the anisotropy dominates.
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