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Extraordinary magnetic field behavior of SIFS Josephson junctions
with an inhomogeneous transparency of the FS interface
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Within the framework of the Usadel equations the Josephson effect in a superconductor-insulator-
ferromagnet-superconductor (SIFS) structure with spatially heterogeneous transparency of the SF interface
has been studied. It is shown that at a certain thickness of the F-layer a step-like variation of the transparency
leads to the formation of a region of size ~ £r (coherence length in a ferromagnet) where the Josephson
supercurrents of different signs may flow. This may lead to a dependence of the junction critical current
on the external magnetic field qualitatively different from the Fraunhofer pattern typically observed in usual

Josephson junctions.

PACS: 74.50.+r, 74.80.Dm, 75.30.Et

It is well known that the critical current I, of any
traditional uniform Josephson junction is suppressed in
an external magnetic field H applied in the plane of the
junction independently on whether the junction is in a
0 or m phase ground state. In particular, if the size of
a one dimensional (along y) junction is smaller than the
Josephson penetration depth As and its critical current
density J.(y) = const, i.e. uniform, then the I.(B) curve
has the form of the Fraunhofer pattern[l, 2]. The unifor-
mity of J.(y) is an important factor. If J.(y) # const,
e.g., changes sign as J.(y) = sgn(y), the I.(B) depen-
dence is strongly modified [3—6]. Such a modification
has been observed recently in experiments with SFS
[4] and SIFS [7-9] junctions. In these structures the
nonuniformity of J.(y) had been achieved by making a
step-like change in the thickness of the F-layer from dg
to dr2. The thicknesses dp; and drs were chosen so that
one part (if isolated) would be in the ground state with
the Josephson phase ¢ = 0 and the other part would be
in the ground state with ¢ = w. Both experiment and
simple theoretical calculations show that in this case the
value of the critical current increases with increasing ex-
ternal magnetic field, approaching a maximum value for
fields of the order of a few mT. This scale of magnetic
field is typical for the majority of Josephson devices. In
previous investigations, which were focused on the prop-
erties of arrays of alternating 0 and 7 Josephson junc-
tions [10, 11], this scale of B comes from the assumption
that there are no other peculiarities at the point of the
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0-m crossover except for the change in the sign of the
critical current density.

In this paper, on the basis of the microscopic the-
ory of superconductivity, we demonstrate that a step-
like change of some parameter inside a Josephson junc-
tion with ferromagnetic barrier may result in strong and
nontrivial changes of J.(y). This, in turn, leads to the
formation of a local conducting region of size ~ £ (the
coherence length in the ferromagnet) near the step re-
sulting in an unusual behavior of the junction in an ex-
ternal magnetic field.

As an example, we consider a tunnel SIFS Joseph-
son junction with a step-like change in the conductivity
of the SF boundary, as shown in Fig.1. Namely, we as-
sume that the SF interface damping parameter is

vB1 = R1S81/prér, for y > 0, (1)
YB2 = RzSz/ppfp, for y < 0. (2)

Here R; > are the SF interface resistances at y > 0 and
y < 0, respectively, S; 2 are the areas of the each inter-
face and pF is the resistivity of the ferromagnetic film
itself, ¢ = (Dp/2nT,) is the superconducting coher-
ence length in the ferromagnet, D is the diffusion coef-
ficient in the F-layer, and T, is the critical temperature
of the superconductors. The conductivity of SF bound-
aries or their transparencies for the electrons are inverse
proportional to the damping parameters ypi 2. We as-
sume additionally that all layers of the structure are in
the “dirty” limit and that the SF interface resistance is
large enough, so that one can neglect the suppression of
superconductivity in the S-layers and use the linearized
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Fig.1. A schematic view of SIFS Josephson junction with
the step-like changing of S/F interface transparency

Usadel equations in the F-layer. These equations have
the form:

o2 o?

& {w + 3_y2} @ —
where ®p = ®p(z,y,w) is the parameterized Usadel
function ®r = WFr/Gr, Fr and G are the Usadel
functions, W = w + iE, E is the exchange magnetic en-
ergy, w = wT(2n + 1) are Matsubara frequencies, T
is the temperature, n is an integer. We use the units
where the Bolzmann constant and the Plank constant
kg = h =1, so that w, T and ®F all have dimensions
of energy. Further on, we introduce other normalization
where the order parameter, the exchange magnetic en-
ergy E and the Matsubara frequencies w are normalized
to nT..

Equation (3) must be supplemented by boundary

conditions. At z = dp, y >0and at x = dp, y < 0
they have the form [12, 13]:

7rT (3)

©
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where A is the magnitude of order parameter and ¢ is the
difference of the phases of the order parameter between
the superconducting banks, and Go = w/vw? + A? is
the Usadel function in the S-electrodes.

At the SI interface (z = 0) (we neglect the theckness
of the insulator and of the SF boundary) the boundary
condition can be written as:

0
— =
oz F Oa (5)
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and at the left and the right ends of the Josephson junc-
tion it reduces to:

)
5yt =0 (6)

The solution of the boundary value problem (3)—(6) at
y > 0 can be written in the form:

cosh (ﬁz/fp) ~
V@ sinh (ﬁd/gp)

__YB2 —VB1 )k cos(wkz/d)
T RF Z ot T (whér)?

5+ (wksp/d)z] 2 )

AG  exp (i%)

Sy =
F VA2 +w?2  YB1

X exp [——

where the prime means that at & = 0 only half of the
term is taken. The solution of the boundary value prob-
lem (3)—(6) at y < 0 can be reconstructed from (7) by
replacing vp1 by yB2 and by changing the sign of the co-
ordinate y. The second term in (7) describes the pertur-
bation of the Usadel functions nucleated by the change of
the SF interface transparency at ¢ = d, y = 0. Substitu-
tion of (7) into the standard expression for the supercur-
rent J across a Josephson tunnel junctions [14] results
in the sinusoidal relation J(p) = J.(y)sin(p) with the
critical current density J.(y) given by

- ®r(0,y,w)
=55 Z \/7A2+w2 Re [ &

where R is the normal resistance of the Josephson junc-
tion, and S is the area of the structure.

From Egs. (7) and (8) it follows that the critical cur-
rent density is not homogeneous along the junction. The
calculation of the J.(y) distribution yields the follow-
ing unexpected result. At values of the ferromagnetic
layer thickness dr for which the junction is near the 0-
7 crossover in the regions far away from the step, i.e.
Je(£00) is small, the critical current density J.(y) oscil-
lates in the vicinity of y = 0 (see Fig.2). These oscilla-
tions decay on the distance ~ £ as one goes away from
the point y = 0. The amplitude of these oscillations can
exceed the value of J.(+o0) by several orders of magni-
tude and the critical current density changes its sign at
y = 0. An oscillating J..(y) means that we have alternat-
ing 0 and 7 regions on the scale of the ferromagnetic co-
herence length . Previously, a similar effect has been
predicted for Josephson tunnel junctions having alter-
nating normal (N) and ferromagnetic regions located on
both sides of a dielectric layer [15], there J.(y) exhib-
ited damped oscillation with a large amplitude near the

Je(y
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Fig.2. The critical current density distribution (in the 1.2} N - Yp = LS
units of 77'/eRS) along the nonhomogeneous Josephson 1oL A TB2 ™ -
junction. The y-coordinate is in the units of £r. The > ’ A V= 100
temperature is T = 0.17., the exchange magnetic en- g 0.8 :(,'/',;.\\
ergy is E = 257T., the ferromagnetic layer thickness is E 06F 8|
d = 1.1356¢F, vyB1 = 1, the values g2 are plotted in the ~° 04 /.’, \\
figure T P
02 I~ —. ./I k) —
boundary between SFIFS and SNINS junctions. It is 0 AN ’ . W ~
qualitatively clear that the presence of such regions in g Y= 1.0
the vicinity of the step at y = 0, must lead to peculiari- (b) d=1.1356 & . Yﬁi =15
ties in dependence of the critical current on the external =l PR W Vgy=5.0
magnetic field H. = | A R Vg, = 100
To find I.(H) we start from the Ferrell-Prange equa- & \ ) A
tion for the inhomogeneous Josephson junction: Tc> 4roe - ’/-'/ N =
N ool X e _
0%o(y) _ Je(v) o N o
2O PY)  J\Y) . _ ~ 2k N y o -
AT ay o sinp(y) =0, 9) SR *;\;;.._\;
where A3 = &¢/[2mpo(dr +dr + 2A1)Jeo] is the Joseph- 0 '
. . - -6 —4 -2 0 2 4 6
son penetration depth, ®¢ is the magnetic flux quantum,
Ar is the London penetration depth, djy is the insulator /D,
thickness, and Jo is the maximum critical current den- 4l (© d=1.1356 &, —7Y5,= 1.0
sity- . e = LS
In the practically interesting limit £F < 2L < Ay (L %: 5L SN VAN Vg2 =50
is the JJ length), the solution of Eq. (9) can be found E' Iy | F Vg = 100
in the form ¢(y) = o + hy/&r, where h = H/Hj is the T | Ix \ L RAY
normalized applied magnetic field in the junction plane, =3 I Lo N
- S A
and Hy = Bo/2nEe(dr + 2Ar). N N W PR
To calculate the maximum value of the critical cur- T R NN
rent, we substitute this ¢(y) into (7) and (8) and in- 0 ks el o ‘L . R
tegrate (8) over y. This full supercurrent across the _2()0 -100 0 100 200
junction has to be further maximized with respect to /D,

the phase difference ¢g. This procedure finally gives

7T

hL
— %2 — 432 1
eRL A ? sin” + X35(h), (10)

Imax (h) = €F

where

¥, = 1B + VB2 Z 1
YB1YB2 ) A? +w2 \/c:usinh(g%\/c:u)’

Fig.3. The junction critical current (in the units of
«T/eRS) as a function of the magnetic flux through the
junction (in the units ®¢) at two ferromagnetic layer thick-
nesses d = 1.5¢(r (a) and d = 1.1356¢F (b). Figure (c)
shows the the same dependencies as in (b), but in the
scale of large magnetic field. All curves are calculated
for L = 100{F, the temperature is T = 0.17., the ex-
change magnetic energy is F = 257T., yg1 = 1, the values
B2 = 1, 1.5, 5, 100 (solid, dashed dotted and dashed-
dotted lines respectively) are plotted in the figure

Mucema B HIT® Tom 88 BEIM.1-2 2008



Extraordinary magnetic field behavior of SIFS Josephson ... 53

pendence of I,.y(h) reduces to the well known Fraun-
hofer form (see Fig.3a). An increase of the difference
71 = B2 — <Y1 results in two completely different sit-
uations. First, if for |y| > &F the junction is either in
the 0 or in the 7 state, then an increase of 1 (increase of
vB2) blocks the left part of the structure for the current,
so the lenght of the junction effectively decreases from
L to L/2, see Figs.2 and 3a. This conclusion correlates
well with the data of Fig.5 from [7], when the current
density of one part of the junction vanishes. Second,
the situation completely changes, if at |y| > &F the sys-
tem is close to a 0-m transition and J.(y) is small. In
this case the second term under the square root in (10)
starts to dominate, resulting in the I,,,,4(h) dependence
presented in Fig.3b,c. This dependence has an extraor-
dinary form. It reminds a [sin®(7®/2®)]/(7®/2®¢) de-
pendence typical for long 0-m Josephson junctions (see,
e.g., Fig.3 in Ref. [9]) — the critical current goes up with
increasing h, up to a certain value. But in our case this
value certainly exceeds not only the scale typical for
Josephson devices, but even the critical magnetic field
of the S-electrodes. Such a field scale is associated with
the small scale (of the order £F) of the nonuniformity in
Je(y)- Therefore, raising Irax(h) should be interrupted
at some point before reaching its (theoretical) maximum
just because the superconducting electrodes will switch
to the normal state. In experiment, one will probably
observe just a linear part of I,y (h) close to H = 0 and
then some effects related to the suppresion of supercon-
ductivity close to H.; and Hs.

The physics of this almost linear increase of Lax(h)
is rather transparent. The external field destroys the
initial antisymmetric distribution of the supercurrent
around the point y = 0 (see Fig.2). Therefore the larger
the field the smaller is the asymmetry of J.(y) and the
larger is the net current across the junction.

Based on the theory presented above, we may specu-
late that any sharp (on the scale of {#) inhomogeneities
inside the Josephson junctions with ferromagnetic mate-
rial may lead to an extraordinary behavior of I, (h) in
the vicinity of the 0-m transition. This behavior results
from the emegence of several 0 and m regions around

Mucema B ARITP® Tom 88 BEIM.1-2 2008

each inhomogeneity having the size ~ £p. This effect
must be certainly taken into account for interpretation of
experimental data. This effects is similar to the field in-
duced superconductivity: at zero applied field the junc-
tion can carry only tiny supercurrent, but when one ap-
plies field, JJ can carry the supercurrent several orders
greater. It also may be used for measurement of the
absolute value of the external magnetic field.
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