Pis'ma v ZhETF, vol. 88, iss. 4, pp- 297 —298

© 2008 August 25

High-temperature solid /melt nanocomposites
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The interfacial energy of nanomaterials can be decreased by grain boundary wetting. Most effective is
grain boundary wetting by chemically compatible melt in the two-phase area of the phase diagram where the
solid and melt are in equilibrium. The possibility of the thermodynamically stable solid/melt nanocomposite
existence in the two-phase area of the phase diagrams where the solid and melt are in equilibrium, is shown.

PACS: 78.67.—n, 81.07.Bc

Nanomaterials [1] have a high interfacial energy and,
therefore, they are thermodynamically unstable and ex-
perience recrystallization problem at 0.2-0.3T,, (T, is
the melting temperature). The interfacial energy can be
decreased sufficiently by grain boundary (GB) wetting.
Most effective is GB wetting by chemically compatible
melt in the two-phase area of the phase diagram where
the solid and melt are in equilibrium [2]. In this case,
the solid/melt interfacial energy can be decreased largely
(~ 1-80mJ/m?) [3—-4].

Here we show the possibility of the thermodynam-
ically stable solid/melt nanocomposite existence in the
two-phase area of the phase diagrams where the solid
and melt are in equilibrium. The calculated, within
framework of a low-angle GB wetting model [5], val-
ues of the solid/melt interfacial energies are typical for
liophilic colloids [3]. This opens the way to the design
of the thermodynamically stable high-temperature nano-
materials.

GB wetting by chemically compatible melt in the
two-phase area of the phase diagrams has been estab-
lished for both ceramic and metallic materials [6,7].
Thermodynamic condition of the GB wetting can be
written as [8]:

Ygb > 271, (1)

where g and 74 are the specific free energies at the
grain boundary and solid/melt interface, respectively.
The vy, depends on the misorientation angle, §. Low-
and high-angle GBs are distinguished by the 6. Low-
angle GBs refer to low-energy; high-angle to high-energy
(with the exception of the so-called special GBs). As
GBs have a wide spectrum of energies, the temperature
of GB wetting will differ: the lower <43, the higher tem-
perature. Because size of the blocks (subgrains) in solids
is 10-100nm, let us consider the thermodynamic oppor-
tunity of low-angle GB wetting. Read and Shockley [9]
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have proposed a formula for v, calculation as a function
of the 6: Ga

47_‘_(1 _ 0_) 0(16 —In 0)7 (2)
where G is the rigidity modulus, a is the lattice con-
stant, o is the Poisson‘s ratio, and 3 is approximately
0.25. According to the equation (2), the <45 increases
with increasing 6 and reaches a maximum, g (max)- If
the 6 corresponding to the 7,4 (max) marks as Omax, than
the eq. (2) can be transformed to [10]:

e _ 9 (1—ln 0) (3)

Ygb (max) B Omax Omax

Ygb =

Estimation shows that the vy values for low-angle GBs,
10" < 0 < 1°, is varied from 1mJ/m? to 150mJ/m? at
Omax = 30° and 7gp (max) = 10° mJ/m?. Consequently,
the thermodynamic condition of low-angle GB wetting
(1) is fullfield at 0.5mJ/m? < 74 < 75mJ/m?. These
751 values on order of magnitude are typical for liophilic
colloids [3]. In particular, the liophilic colloid may form
in the two-phase area of the phase diagram (Figure)
where the solid A or B and melt are in equilibrium. The
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formation of the high-temperature liophilic colloid could
be explained as follows. It is known that the GB wet-
ting by eutectic melt occurs in the two-phase area of
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the phase diagrams (point C' in Figure) [2]. With fur- 3.

ther rise in the temperature, v, is decreased. If the
751 Teaches a value of 0.5mJ/m? — 75mJ/m?, the low-
angle GB wetting by chemically compatible melt occurs
(for example, point D in Figure). At that, the partial
dissolution of the solid grains A takes place. As the
result, the thermodynamically stable high-temperature

solid/melt nanocomposite may exist. 8.
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