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Two-electron bound states in continuum in quantum dots
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Bound state in continuum (BIC) might appear in open quantum dots for variation of the dot’s shape. By
means of the equations of motion of Green functions we investigate effect of strong intradot Coulomb inter-
actions on that phenomenon in the framework of impurity Anderson model. Equation that imaginary part
of poles of the Green function equals to zero gives condition for BICs. As a result we show that Coulomb
interactions replicate the single-electron BICs into two-electron ones.
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In 1929, von Neumann and Wigner [1] predicted
the existence of discrete solutions of the single-particle
Schrodinger equation embedded in the continuum of pos-
itive energy states. Their analysis examined by Stillinger
and Herrick [2] long time was regarded as mathematical
curiosity because of certain spatially oscillating central
symmetric potentials. More recently in 1973 Herrik [3]
and Stillinger [4] predicted BICs in semiconductor het-
erostructure superlattices which were observed by Ca-
passo et al. as the very narrow absorption peak [5].

In the framework of the Feshbach’s theory of reso-
nances Friedrich and Wintgen [6] have shown that bound
state in continuum (BIC) occurs due to the interference
of resonances. If two resonances pass each other as a
function of a continuous parameter, then for a given
value of the parameter one resonance has exactly van-
ishing width. Later this result was reproduced in ap-
plication to different physical systems in the two-level
approximation [7—12]. Straight waveguide with an at-
tractive, finite size impurity presents an example of re-
alistic structure in which Kim et al. presented the nu-
merical evidence for the BIC for the variation of the
impurity size [13]. Further, calculations in microwave
and semiconductor open structures showed that the res-
onance width also can turn to zero for variation of angle
of bent waveguide [14], shape of quantum dot (or res-
onator) [12, 15], or magnetic field [16]. Recently it was
rigorously shown that the zero resonance width is the
necessary and sufficient condition for BIC [16, 17]. This
condition means that a coupling of the resonance state
with continuum equals zero to convert the state into BIC
[18, 16].

That very restricted list of references shows that
BICs might occur in different open quantum systems in-
cluding, for example, laser induced continuum structures

in atoms [19], in the molecular system [20]. However
in application to open quantum dots (QD) BICs were
studied in the single electron approximation whereas the
Coulomb interactions between electrons might be very
important for robustness of the BIC. In the present work
we consider effect of local intradot Coulomb interactions
in QD onto BICs in the framework of the two-level impu-
rity Anderson model [21] that is one of the most impor-
tant theoretical models for a study of strong correlations
in condensed matter physics.

We consider QD coupled to leads (left and right)
which support one propagating mode (the case of two
continuums) with the following total Hamiltonian

H= Y Hg+Hp+V. (1)
C=L,R

The leads, left L and right R in (1) are presented as the
non interacting electron gas

HC = Ze(k)c;:accka-c, C = L,R. (2)
ko
A continual spectrum €(k) defines the propagating band

of leads. The Hamiltonian of many level QD is that of
the impurity Anderson model [21],

Hp = Z ema;aama + Z UnfmoNmz- (3)
mo m

Here a},  is the creation operator of an electron on the
m-th level of QD, U,, takes into account the Hubbard
repulsion at the level m, and n,, = a}_ams. The in-
teraction

V= Z Vin (k) (ck+o-Ca'mcr + hC) (4)
komC
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describes couplings between the leads and QD where
¢} o is the creation operator of an electron in the lead C.

In order to calculate transport properties of the QD
we use a technique of the equations of motion for re-
tarded and advanced Green functions which success-
fully used to consider the Fano and Kondo resonances
in the Anderson model [22—-27]. Following Laxroix
[28] we use a Hartree-Fock approximation in the wires
{{erocaizanzlat ) = (nnz){{ckoclat,.)). The ap-
proximation is justified for weak couplings compared to
the Coulomb interactions: V,, < U,,- As a result we
obtain the following equation

G Y(E) = Ggp(E) +il (5)

for the Green functions G no' (E) = ((amola,l )1
in the form of the Dyson equation [24]. Here Ggp(E
is the Green function of the isolated QD

GQD,mm' ,0,0" (E) = GQD,mo’ (E)amm' 60',0',

GQD,ma(E) = 1;@;?> + Ef?:f)[]ma (6)

which are exact for the isolated QD. For the simplicity
we take wide band wires and approximate the self-energy
as [29, 24]

Z Vf(k)Vn(k) Fmrn
k

(7)

where po(E) is the density of states of the left and right
wires. The average values of the occupation numbers
(Pmo) = (@} ,amo) which enter the expressions for the
Green functions are calculated self-consistently via the
formulas [28]

N PN — g Vi E:_.
E—ek), +i0 -~ /mVnpo(B) = =i

(o) = 3 [ 4B 102G s (B). (8)

The form of the self-energy (7) and the QD Green
function (6) allows to proceed to the case of free elec-
trons with U,, = 0. In this case BIC appears if QD
acquires accidental degeneracy e; = €3 [12]. Therefore
in the vicinity of the degeneracy point € = €3 —€¢; = 0
we can restrict ourselves to the two-level approximation
for QD [9]. Then the occupation numbers (8) are given
by four poles of the Green function (5). At zero tem-
perature, the transmission amplitude can be expressed
in term of the Green function

T =TG(E)T+, T = (T'1,T,). (9)

The results of numerical self-consistent calculation
of the transmission (9) are presented in Fig.1. Fig.la
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Fig.1. (a) The transmission In|T'| of QD versus energy of
incident electron and energy splitting e for the case of zero
Hubbard repulsion Uy = Uz = 0. (b) The case of strong
Hubbard repulsion U; = 0.2, U = 0.3,T'y = I's = 0.05.
The single-electron and two-electron energy levels in closed
QD are shown by thin lines. Black regions correspond to
those where the transmission close to zero while the white
regions do to the maximal transmission

shows the case of zero Hubbard repulsion U, = 0 (no
electron correlations) in which QD is given only by
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the single-electron energy levels. As shown in [9, 12]
BIC occurs here at the point of degeneracy of electron
states in QD for € = 0. At this point the S-matrix
becomes singular because the transmission zero crosses
the unit transmission [12] as shown in Fig.1 where the
unit transmission follows the energy levels. As the Hub-
bard repulsion is included, QD is given not only by
single-electron states but also by two-electron states as
shown in Fig.1b by solid lines. As a result we obtain
that the number of degenerated points becomes four as
seen from Fig.1b. One can see that lines of zero trans-
mission cross the lines of maximal unit transmission at
these points. Therefore, one can expect the BICs at
four points of degeneracy of the QD. In order to show
that we present in Fig.2 the resonance widths of the

0.15
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0
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€
Fig.2. The resonance widths defined as
—2Im[zx(E,€)], A\ = 1,2,3,4 versus ¢ for E = 0

where z) are the poles of the Green function (5)

energy levels defined as I'y = —2Im(z,), A = 1,2,3,4,
where z)(E, €) are the poles of the Green function or ze-
ros of the right hand expression in the Dyson equation
(5). The points at which I’y = 0 define BICs [16, 17].
One can see that these points coincide with the points
of degeneracy of the QD given by equations €;; = 0,
€c2 = U1/2, €c3 = —U2/2, €cqg = (U2 - U1)/2 The
corresponding energies of BICs are 0, 0.1, —0.15, 0.05.
The first BIC is pure single electron localized state su-
perposed of two single electron states with m = 1,2 [12].
However the next two BICs are supespositions of the sin-
gle electron states and two-electron ones. At last, for the
last case (eca = (U2 — U1)/20 the BIC is superposed of
the two-electron states in QD. Although specific values
of T';, has no importance for BIC’s points defined by
crossings of the energy levels of QD, they are important
for appearance of the Dicke superradiant state which ac-
cumulates the total width [9] as seen from Fig.2.

1.0
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Fig.3. The electron populations as dependent on the en-
ergy of incident electron defined by (8) for the parameters
of the system given in Fig.1. (a) e = 0, (b) e = —0.15, and
(c) e=—0.05

Since the resonance width turns to zero with ap-
proaching the BIC point, we expect singular behavior
of occupation numbers (8) at the energy of BIC. In fact,
Fig.3a,b, c demonstrate this effect. Let us consider the
first BIC at € = 0 with discrete energy E = 0 at which
the single-electron energies in QD are crossing as shown
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Fig.4. (a) The transmission In(—In(1—|T'|)) of QD versus
energy of incident electron and energy splitting € in the
avoiding crossing scenario v = 0.05, U; = 0.2, U, = 0.3,
I'y =T'2 = 0.05. Black regions correspond to those where
the transmission close to zero while the white ones do to
those where the transmission is near unit. Thereby the
white regions follow the single-electron and two-electron
energy levels in closed QD. Positions of BICs are shown
by open circles. (b) The resonance widths as shown in
Fig.2b, but in the avoiding crossing scenario

in Fig.1b. One can see from Fig.3a that at the energy
E = 0 both energy levels are sharply and simultaneously
populated till one half. The next resonances with finite
Mucema B MIAT® Tom 88
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Fig.5. The same as in Fig.4 but with inclusion of the inter-
level Coulomb interactions Uiz = 0.1.(a) The transmission
In|T| of QD versus energy of incident electron and en-
ergy splitting e in the avoiding crossing scenario v = 0.05,
Ui =U; =0.2,Ty =T3 = 0.1. (b) The resonance widths
defined as —2Im[zx(E,€)], A =1,2,...8 versusefor E =0
where z are the poles of the Green function (10)

widths correspond to the two-electron energies of QD
that are populated smoothly at the Hubbard repulsive
energies U; = 0.2 and U, = 0.3 by usual scenario as
seen from Fig.3a.

The next BICs happen for the single-electron state
crosses the two-electron state at points € = —0.15 and
e = 0.1. Because of similarity of these BIC points
we have presented here only the first case as shown in
Fig.3b. The BIC’s discrete energy for that case equals
to E = 0.15 (Fig.1). Again we see that for approaching
to this energy the BIC populates sharply. However the
populations of the single-electron level and two-electron
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one are well separated because of the Hubbard repul-
sion of the two-electron state. The last figure Fig.3c
refers to the crossing of two-electron energies at the point
e = —0.05. As seen from Fig.1a the two-electron BIC
has energy E = 0.25. As a result for approaching this
energy we observe sharp population of this state similar
to the case (a).

Are BICs critical to energy level crossing? Similar to
[9, 12] we lift the degeneracy in the QD by transitions be-
tween levels, adding a hopping term between the single-
electron states into the Hamiltonian of the two-level QD,
Hp — Hp —va}, as, — vad, a1, which evolves the pic-
ture of energy crossing into a picture with an avoided
crossing. Fig.4a shows the transmission of QD in which
the energy levels repel each other because of the hop-
ping between QD levels. In order to show clearly the
zero and unit transmission we present the transmission

in the double log scale In(—1In(1 — |T'|)). One can see
the avoided level crossings shown by white lines with
T = 1. BICs shown by open circles are located at those
points where the unit transmission 7 = 1 (white lines)
crosses the zero one G = 0 (black lines) similar to the
case of non interacting electrons [12]. Fig.4b shows that
the resonance widths turn to zero at four critical values
of e.

The Hubbard repulsion presented in the Anderson
impurity model (3) is not the only way to account the
Coulomb interactions. The last also induce the inter-
level couplings in the form » > . Unnfmelne-
Therefore, in the two-level approach a new Coulomb
constant U2 appears. The equations of motion for the
Green functions in the QD become tedious but still com-
plete to give the following Green function

GQD,ma' (E) =

(E + En)(E + En — Un — Ura (o) )(E + Em — Urz = U (nm))

(E+En—Uyn(1=(nmo)) — Ur2{nme))(E + Ep — Ura(1 = (nimo ) — U (Mo ) )(E + B — Uy, — Ura(nms )’

where m = 1,2, m = 2,1, E,, = Fe. A substitution
of (10) into Egs. (5), (8) and (9) allows to calculate
the transmission of the QD presented in Fig.5a. Each
crossing of energy levels shown by solid lines gives rise
to BICs as shown in Fig.5b. One can see that for e = 0
there are simultaneously four crossings. As a result at
this points four resonance width turn to zero as shown
in Fig.5b. Corresponding at the points € = £0.05 we
obtain three BICs and so on. If to compare all Figures
with transmission probability through the QD one can
see that the Coulomb interactions in QD replicate the
transmission zeros which are between neighboring res-
onances. If the resonances are crossing by an effect of
gate voltage we observe BICs at each crossing points [6]
as Figs.2, 4b and 5b show.
AF thanks Igor Sandalov for helpful discussions.
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