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The observable line shape of the spontaneous emission depends on the procedure of atom’s excitation. The
spectrum of radiation emitted by a two-level atom excited from the ground state by a pi pulse of the resonant
pump field is calculated for the case when the Rabi frequency is much larger than the relaxation rate. It is
shown that the central part of the spectral distribution has a standard Lorentzian form, whereas for detunings
from the resonance that are larger than the Rabi frequency the spectral density falls off faster. The shape of
the wings of the spectral line is sensitive to the form of the pi pulse. The implications for the quantum Zeno
effect theory and for the estimates of the duration of quantum jumps are discussed.

PACS: 32.70.Jz, 42.50.—p

We shall treat the problem of the natural line shape —
the shape of the spectral line of the spontaneous emis-
sion — the radiation emission by a secluded atom accom-
panying the transition from the excited state (to some
lower one) that originates from the interaction of the
atom with the quantized electromagnetic field. In what
follows we use the model of the two-level atom with the
excited state |2) and the ground state |1) with the en-
ergies F» and E; respectively, which are connected by
the electrical dipole transition. The theory originally
developed by Weisskopf and Wigner [1] starts with the
assumption of the exponential decay of the amplitude of
the initial state,

B(t)=e . )

It yields the Lorentzian line shape,
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where wg = (Ey — E;)/h is the transition frequency

(h is the Planck’s constant). The natural linewidth is
v = T'/2, where the transition rate I' is given by the
equality

2
D=5 Vel (B), )

that was originally derived by Dirac [2] and now is uni-
versally known as the Fermi golden rule. In Eq. (3) n
and k denote the initial and final states of the system
“atom + field”, V,; are the matrix elements of the in-
teraction of atom with the quantized field, and p(Ey) is
the energy density of the final states. The summation
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over the quantum numbers others than energy is carried
out.

The expression (3) includes the values of the matrix
elements and of the density of states on the energy sur-
face E = E,, = Ej. Since the relative variations of V,,;
and p(Ej) within the main peak of the spectral line (2)
in the optical range have values about y/wy ~ 1078,
the Lorentzian line shape promises to be very accurate.
To my knowledge, the deviations from (2) were never
established experimentally.

However, from the theoretical point of view the
Lorentzian form of spectrum is irritating. On one side,
this expression can not be universally valid, since the
negative frequencies of photons are physically meaning-
less. On the other side, Eq. (2) gives for the mean fre-
quency of the radiation @ the expression that diverges -
literally logarithmically, but even faster, if the frequency
dependence of the matrix elements, V « /w (cf. Eq.
(13)), and of the energy density of states, p o w?, is
taken into account [3].

The line shape Eq. (2) can be interpreted as the form
of the energy distribution W (E) = A~1S (E/A) for the
quasistationary initial state of the system |¥ (0)). The
law of decay of the initial state is given by the Fourier
transform of the energy distribution,

(1) = (T (0) | T ()" =

= ‘/W(E) exp (—z%) dE

The Lorentzian form of the energy distribution leads to
the exactly exponential decay law & (t) = e~ '?, that
makes the Weisskopf and Wigner theory self-consistent.
Thence the problem of the natural line shape can be re-
formulated as the problem of the law of the decay of the
initial state: deviations from Eq. (2) will lead to the

2

(4)
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nonexponentiality of the decay — and vice versa. The
additional incentive to study the detailed form of the
initial stage of the decay law came from the concept of
the quantum Zeno effect [4, 5]. If for small times the de-
cay law is quadratic, ® (t) ~ 1 — (¢/7z)” (the parameter
7z is known as the Zeno time), then frequent measure-
ments of the energy of the system will prevent the de-
cay of the initial excited state. This property permitted
Schulman [6] to introduce the estimate for the duration
of the quantum jump between the atomic states as the
crossover time from the quadratic decay to the exponen-
tial (Fermi) decay:

TJZFT%. (5)

The logic behind this definition is lucid: if the measure-
ment can influence the kinetics of the quantum jump,
then it has not been completed yet.

Let’s take the Hamiltonian of the system in the form
H=H,+V,+ H;, where H, and H; are the Hamilto-
nians of the free atom and of the quantized field respec-
tively, and Vq accounts for the atom’s interaction with
the quantized radiation field: Vq =Y "(0x +9Y),

X
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3 (Aie,\&}‘" exp(—ik,r), (6)

Uy =1

where the index A numerates the modes of the quantized
field. Here L2 is the quantization volume, d is the oper-
ator of the dipole moment of the atomic electron, wjy, kx
and ey are the frequency of the photon, its wave vector
and the polarization vector of the mode A respectively,
and d;\r and ay are the creation and annihilation opera-
tors for this mode.

If the atom is in the initial state |¢) and the field is
in the vacuum state, then the dispersion of the energy,

2 _ 2h
3rcd

AE

(0] &2 ) / Wi, (1)

is infinite, since the integral diverges at the upper limit,
and the Zeno time 77 = 0. In Eq. (7) c is the speed of
light.

Several authors [7, 6, 8] have found finite values of
7z for the spontaneous emission of radiation by using
the two-level model of the atom with the initial state |p)
and the final state |#). In this case

he & o ikr 2
AE? = HZ/k|<<p| de,e™ |0)] dk.  (8)
p=1

The account of the momentum of the emitted photon
suppresses the matrix elements in the high frequency do-
main and effectively cuts off the Lorentzian line shape at
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the frequencies around wy = a ™ 'w,, where a = €? /fic is
the fine structure constant (e is the electric charge of the
electron), and the atomic frequency unit w, = me*h=3
(m is the electron’s mass). However, the results of these
authors contradict their assumptions: if the hydrogen
atom in the initial state 2p can indeed emit a photon
with the energy about E; = hw; = 3.7keV, then there
is no reason to limit the channels of decay by the tran-
sition only to the state 1s.

The influence of the truncation of the Lorentzian
shape (2) in the domain w < 0 on the decay law was
studied in Ref. [9]. This truncation diminishes the ini-
tial decay rate by half, but doesn’t lead to the quadratic
decay.

The physically unsatisfactory divergences of @ and
Aw? are rooted in the unphysical initial conditions. It
is a commonplace of the theory of quasistationary states
that their properties depend on the procedure of their
preparation [10]. Therefore this procedure must be
taken into account explicitly. The importance of this
approach in the problem of the natural line shape was
noted long time ago [11].

Let’s assume that the atom initially was in the ground
state |1) and then was excited by a pulse of the resonant
pump field (of the frequency wp) that has the properties
of the pi pulse [12], that conveys the two-level system
(in the absence of relaxation) from one state into the
other. We take the Hamiltonian of the system in the
form H = ﬁa + Vq + Vc + ﬁIf, where I:Ia and I:If are the
Hamiltonians of the (two-level) atom and of the quan-
tized field respectively, Vq accounts for the atom’s inter-
action with the quantized radiation field (in the dipole
approximation) and V. describes the atom’s interaction
with the classical pump field:

-~

V. = —dE (t) cos wot, 9)

where E (t) is the envelope of the electric field of the
pulse. For the sake of simplicity we assume that
the pump carrier frequency equals the transition fre-
quency wp.

The state vector of the system can be expanded as

| (t)) = AL, V)e ™' + B2, V)e ™"+ (10)
+ ) Cxl1, Ay e Herten)t,
A

where |j, V) denote states of the system with the atom
in the state |j) and the field in the vacuum state; in the
state |1, A) the atom is in the ground state |1), one pho-
ton is present in the mode A, and there are no photons
in other modes; w; = E; /h.
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The evolution of the system is governed by the sys-
tem of equations

A .
Zcfi_t = BQ (t) coswote™ ™ot (11)
_dB iwgt iAxt
e AQ (t) coswote*°* + Z unCre™",  (12)
A
z% = u;\Be_iA*t. (13)

Here Q (t) = —d;2E (t)/h , where d;2 is the matrix el-
ement of the dipole moment between the states |1) and

2),
. [2mw
Uy =1 LT’; disey, (14)

and Ay = wp — wy is the frequency detuning between
the atomic transition and the emitted photon.

Let’s consider the pi pulse with the rectangular en-
velope,

Q@) =0 (—%<t<0), (15)

Q@)=0 otherwise,

and assume that the Rabi frequency is much larger than
the relaxation rate, {2 > 7. Then throughout the dura-
tion of the pulse we can neglect the spontaneous radia-
tion, and take into account only the pump field. Thus
from Egs. (11) and (12) with the initial conditions
A(—7m/Q) =1, B(—n/Q) = 0 in the rotating wave ap-
proximation we obtain

B(t) = —icos%t (—z <t< o). (16)

Q

To describe the second stage, that of the free emission,
we can use the exponential decay of Eq. (1):

B(t) = —ie (t>0). (17)

The Egs. (16) and (17) have the accuracy of the order
7/Q K 1, that is sufficient for our purposes.

By substitution of Eqs. (16) and (17) in Eq. (13)
and integration we obtain for the limiting values of am-
plitudes C\:

Cx (00) = —urF (wy), (18)
where the spectral amplitude is given by the expression

F) = 2Qexp (i%5) — 4iA 1
vl = 02 — 4A2 Aty

(19)

The spectral distribution of photons is S(w)=N|F(w)|?,
where N is the normalization constant; in our case
N =~ vy/m. The explicit expression for S (w) is too cum-
bersome; it is more convenient to work with the formula
(19).

Firstly, it must be noted that the first term in the
right-hand side (RHS) of (19) is regular at A = £Q/2,
since at these points both the numerator and the de-
nominator have simple zeroes. Secondly, for small fre-
quency detunings |A| < Q the second term in the RHS
of (19) dominates, and the line shape is given just by
the standard Lorentzian form (2). Thirdly, for large
|A| > Q > v, after expanding both terms in negative
powers of A, we find that two terms of the order A1
cancel each other. The dominating contribution comes
from the term

Q A
F (w) ~ = exp (;%) A2, (20)
that defines the asymptotics of the spectral density
v @
N ——. 21
S~ L5 (21)

It decreases rapidly enough to provide a finite average
value of the frequency of the emitted photons @ (that in
our approximation is indistinguishable from the transi-
tion frequency wp) and the finite value of the frequency
dispersion Aw? =~ 0.390T.

It must be noted that the behavior of the wings of the
spectral line depends on the form of the envelope of the
pi pulse. We have calculated the spectral density S(w)
also for the pi pulse with the sine envelope:

Q(t):—gﬂ sin Ot (—% <t<0), (22)

Q(t) =0 otherwise.

The results are compared in Figure with the Lorentzian
line shape and the spectral distribution for the rectangu-
lar envelope. It can be seen that for both types of pulses
the crossovers between Lorentzian and asymptotic forms
occur at A ~ Q.

It has to be stressed that the process that we deal
with should not be interpreted as a “filtering” of a
pump pulse with the spectral width about Q through the
atomic transmission function of the Lorentzian shape.
Firstly, in Figure one can see that the spectral density of
the emitted radiation does not vanish for the frequency
detuning A = 2Q = 20+, whereas there are no photons
of this frequency in the spectrum of the incident pi pulse
with the rectangular envelope, Eq. (15). Secondly, the
pulse of the doubled duration, that of the form Q(¢) = Q
for —270Q71 < t < 0 and Q(¢t) = 0 otherwise, will have
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The dependence of the logarithm of the spectral density
In S on a scaled frequency detuning A /v for the Rabi fre-
quency Q = 10v. Solid line — the Lorentzian form (2),
dashed line corresponds to the rectangular envelope of the
pi pulse, Eq. (15), dotted line — the same for the sine pulse
envelope, Eq. (22)

the power spectrum that is twice as narrow and has the
peak intensity four times as large as the power spectrum
of the pulse Eq. (15). From the “filtering” reasoning one
should expect similar changes in the spectrum of emit-
ted radiation. However, in this case the radiation will
be smaller than that from the pi pulse Eq. (15) by the
factor about v/Q. Doubling the duration creates the
2 pi pulse that rapidly returns the system to its initial
non-radiating state [12]: the atom can emit photons only
throughout the short duration of the excitation pulse.

The process of radiation due to the excitation of an
atom by a pi pulse is an essentially nonlinear process.
It can be seen from the zeroth order expression for the
probability amplitude

t
B(t) = —isin | / Q)dt | . (23)

Attempts to interpret the properties of this process by
exploiting analogies with the one-photon scattering are
doomed.

The asymptotic behavior of the radiation spectrum
is determined by the degree of smoothness of the ampli-
tude B(t): the number of its first discontinuous deriv-
ative and the magnitude of the jump. It is possible to
construct the “pi pulse” that will lead to the spectral
wings of radiation that decay faster than Eq. (21), e.g.
as A7S.

The finite dispersion of the frequency defines the
Zeno time of the system [6]; thus 7z = (Aw2)71/ 2~

~ (Ql")_l/ %, Then from Eq. (5) we obtain a somewhat
trivial estimate for the duration of the quantum jump in
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our case, 7y ~ Q1. It must be noted that indefinite
increase of the amplitude of the pi pulse will eventu-
ally violate the applicability of the two-level model. The
transitions to other states of the system are necessarily
important if the Rabi frequency is comparable to the
transition frequency, Q ~ wg. Thus our model assures
that the duration of the quantum jump accompanying
the spontaneous emission from a given transition will
always be larger than the field period, 77 2 wg 1. This
inequality is almost universally accepted by the commu-
nity of physicists on the grounds of common sense and
is reflected in the literature [13].

Our analysis is limited by the domain Q > ~. It
is interesting to compare it with the opposite limiting
case. For Q < v the rectangular “pi pulse” defined by
Eq. (15) lasts much longer than the relaxation time y~!.
Therefore during the most part of the pulse the initial
state of the system is already ignorable, and the differ-
ence between the sequence of long “pi pulses” and the
continuous pump field is unimportant. The spectrum of
radiation of the two-level system under the influence of
the continuous monochromatic field has been calculated
by Mollow [14]. For  « + and the pump frequency that
equals that of the transition, wg, the power spectrum in
our notation has the form

0?2 202y

P(w)zﬁ 2w6(w—w0)+m

where §(z) is the Dirac’s delta-function. The first term
in the brackets describes the scattering of the pump ra-
diation with unchanged frequency. Only the second, in-
coherent term can be interpreted as a spectrum of the
“spontaneous” emission by the atom that is excited by
a weak resonant field. The term “spontaneous” in this
case may be too stretched, since the atom in the con-
tinuous monochromatic field can hardly be considered a
secluded one. However, if one accepts this interpreta-
tion of the incoherent term, then it may be noted that
for large |A| it follows the inverse quartic law, similar
to our Eq. (21). Pushing the interpretation further, we
may say that for the spectral distribution given by the
incoherent term the Zeno time and the quantum jump
time happen to be equal: 77 = 7; = T'L.

In conclusion, we have demonstrated that the line
shape of the radiation, spontaneously emitted by an
atom excited by a strong pi pulse is Lorentzian only in
the domain of frequency detunings that do not exceed
the Rabi frequency of the pulse, |A| < Q. For larger
values of |A| it falls off much faster. For the transition
with the frequency wo = 3.5-10'%s~! and the matrix
element of the dipole moment di, = 2.5 - 10718 CGS
the spontaneous emission rate is I' = 1.3 - 107 s~1. The
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condition 2 = 10y corresponds to the intensity of the
rectangular pi pulse I = 92 mWcm 2 and to its du-
ration # = 7/ =47ns. In these conditions for the
Lorentzian line shape approximately 6% of the emitted
photons must have frequency detunings |A| > Q. The
observation of shortage of these photons seems to be
accessible to the modern spectroscopic experiment.
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