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Gluonic correlation length from spin-dependent potentials

A. M. Badalian, A. V. Nefediev, Yu. A. Simonov
Institute of Theoretical and Experimental Physics, 117218 Moscow, Russia

Submitted 22 July 2008
Resubmitted 9 September 2008

The vacuum gluonic correlation length is extracted from recent lattice data on spin-dependent interquark
potentials in heavy quarkonia. It is shown that the data are consistent with extremely small values of the

correlation length, Ty < 0.1fm.
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1. Introduction. The history of the nonperturba-
tive vacuum gluonic fields in QCD can be started with
the introduction of condensates in the framework of the
QCD sum rules [1], where the notion of the nonpertur-
bative vacuum fields was introduced and the first esti-
mate of the gluonic condensate, Go = <=(Fj3 Fp) =
= 0.012GeV*, was given. Higher condensates and other
possible vacuum averages of local operators, in line with
the Wilson expansion, were introduced and estimated in
Ref. [2] (for a review see Ref. [3]). However, for under-
standing the nonperturative dynamics of the QCD vac-
uum another characteristic is vitally important — namely,
the vacuum correlation length of gluonic fields T, which
defines the nonlocality of gluonic excitations. At a phe-
nomenological level it was discussed in Ref. [4], while
its rigorous definition was given in the framework of the
Field Correlator Method (FCM)Y [5, 6] (see Ref. [7]
for a review of the method). The physical role of T,
for the phenomenology of hadrons is quite important:
in particular, for hadrons of the spatial size R and the
temporal size T, the QCD sum rule method can be ap-
plied if R, T, < Ty, while potential-type approaches are
valid in the opposite limit, R,T, > T,. An example
of the exactly solvable theory with T, = 0 is provided
by the 't Hooft model for QCD in two dimensions [8]
(see Ref. [9] for a review), which reveals a lot of inter-
esting phenomena reminiscent of those one expects in
four-dimensional QCD.

Direct lattice measurements of the gluonic corre-
lation length give rather small values for the latter,
T, ~ 0.15 + 0.3fm [10]. In this paper we adopt another
strategy: using the FCM we extract the vacuum correla-
tion length from the spin-dependent potentials measured
recently on the lattice, in the quenched approximation
and without cooling [11]. We argue that the data pre-
fer even smaller values of the vacuum correlation length,

1) This method is often called as the Stochastic Vacuum Model.

T, < 0.1fm. Notice that the spin-dependent potentials
possess a direct physical meaning and are expected to
be free of any artifacts of the definitions and methods
used. In particular, the lattice field strength correlators,
also measured in Ref. [11], are calculated as matrix ele-
ments of operators defined in (potential) nonrelativistic
QCD and simulated on the lattice. They are to be multi-
plied by the appropriate renormalisation factors in order
to give the corresponding correlators in continuum. Al-
though such renormalisation factors are expected to be
calculated directly from QCD, they are, generally speak-
ing, not known at present.

2. Spin-dependent potentials in the Field Cor-
relator Method. Spin-dependent interaction in a
heavy quarkonium is well known [12—14] and, to the
order O(1/m?), it reads:

N 2) V() + 2V ()] +
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2mimar £ (r) + 12mims
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g192 V4(’f’) +

where m; and o; (¢ = 1,2) are the quark masses and
spins, respectively. Primes denote the derivatives with
respect to the interquark separation r. The static in-
terquark potential V5(r), together with the potentials
Vi(r) and Va(r), satisfies the Gromes relation [14],

Vo(r) + Vi(r) - V5(r) = 0. (2)

Notice that this relation refers both to the perturba-
tive and nonperturbative parts of the potentials V,(r)
(n = 0,1,2) and, while their perturbative parts satisfy
this relation identically, their nonperturbative parts sat-
isfy it in the FCM. With the definition of V;,(r) used in
Ref. [12] the fulfilment of Eq. (2) is not evident. In all
lattice calculations (see, for example, Refs. [11, 15]) re-
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lation (2) is satisfied only approximately. For a detailed
discussion of this issue see Ref. [16].

The spin-dependent interactions in the form of
Eq. (1) can be derived naturally in the framework of
the FCM [17]. To this end a quark—antiquark system is
considered and its wave function is built:

T (z,y|A) = Ty(z) @ (2, ) Ta(y),

with nonlocal gauge invariance guaranteed by the par-
allel transporter,

®(z,y) = Pexp (zg/ dzquta).
y
Then the Green’s function can be constructed as
G = (T3 (2,914) 957 (z,y]4)) g4 =
= (Tl‘sq(:l_f, 1"|A)‘I>($’ y)Sq (ya ylA)@(g, i))Aa

where S, and S are the propagators of the quark and
the antiquark, respectively, in the background gluonic
field. Using the Feynman—Schwinger representation for
the single-quark propagators one can see that the in-
terquark interaction is described in terms of the Wilson
loop W(C), with the contour C' running over the quark
trajectories, averaged over the background gluonic field.
More specifically, the value (TrW (C)), which enters the
quarkonium Greens’ function, can be expressed through
the correlators of the field strength tensors as

(YW (C)) = <Trexpig / dw#,,(z)F”,,(z)> -
_ expg:l ("f% /d7r(1).../dﬂ(n)((F(l)...F(n))),

where the cluster expansion theorem [16, 15] was used.
The average ((...)) stands for connected correlators,
for example, for the bilocal correlator, ((F(1)F(2))) =
= (F(1)F(2))—(F())(F(2)), and Fy, = 8,4, —8, 4, —
— ig[Ay, A,] is the vacuum field strength. Obviously,
(F)) = (F) = 0.

The element of integration,
Ay (2) = dspu(2) — ial(j,)drl + iofﬁ)drz,
with a,(f,z = £ (Y — 1Yu) (@ = 1,2 for the quark and
antiquark, respectively), contains both the element of
the surface area and the quark spin variables accompa-
nied by the quark proper time differentials. This is the
most economical way to include spin-dependent interac-
tions into consideration [18]. In the Gaussian approx-
imation for the vacuum, when only the lowest, bilocal
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correlator is retained (see Ref. [19] for the discussion of
the accuracy of this approximation), one has

(TrW) o exp [—% /Lgdw,,,,(m)dﬂAp(x')DW,\p(x -z')|,
3)

where

2

Dyunp(@—a') = 5= (TrF,, (2)8(2,2') Fap (=) (e’ 2))
c

This bilocal correlator can be expressed through only

two gauge-invariant scalar functions, D(z) and D;(z)

[5, 6]:

Dywrp(2) = (6undup — 8up0un)D(2) +

1] 0 wev

— | — (2260 — Z,0rs D (2).
+3 82:“(2’\ p = 2p0r )+()\ p)] 1(2)
The correlator D(z) = D(zo,|2|) contains only a

nonperturbative part and it is responsible for the QCD
string formation at large interquark separations. The
fundamental string tension can be expressed as a dou-
ble integral:

a=2/0°°d1//0°°dw(u,x). )

This correlator decreases in all directions of the Euclid-
ean space, and this decrease is governed by the gluonic
correlation length T,

g

2
7rTg

z2=vX+12  (5)

D(z) exp[—z/Ty],

where the coefficient is chosen to satisfy the relation (4).
Strictly speaking, the asymptotic form of the correla-
tor (5) is valid at large distances, at |z| > T, while at
|z] < T, the function D(z) admits a Taylor expansion
with the parameter 22 /T (see, for example, Ref. [20]).
Notice however that, for small T, the contribution of
the region |z| < T, to the integrals defining the spin-
dependent potentials (see Eq. (8) below) is negligible,
so we stick to the simplified form (5) from the begin-
ning.

Another important comment concerning the correla-
tion length T, is the scale at which it is defined (see,
for example, Ref. [21] for the discussion of the issue in
relation to the Operator Product Expansion in QCD).
By natural arguments we expect the scale of T, to be of
order of the average size of gluelump (average momen-
tum), which is of the order of 1 GeV (see Ref. [22]).

The other correlator, D1(z), contains both perturba-
tive and nonperturbative contributions. Its perturbative
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part leads to the colour Coulomb interaction between
the quarks, whereas its nonpeturbative part was para-
metrised through the gluelump spectrum in Ref. [23].
We use this parametrisation here:

405CFr 1 2CFa5<radj

Di(2) = Tzt Tz
g

exp[—Z/TS',],

where Cp = (N2 —1)/(2Ng) = 4/3, Caqj = No = 3,
0adj = (Cadj/Cr)o = (9/4)0, and as = g*/(4n). Then

16as 1 bago

D)= 3 "4 2T}

exp[—z/T,).

For the sake of generality the correlation length T is
kept different from T, — see Ref. [23] for the details.

The spin-independent part of the interquark interac-
tion follows from the area law asymptotic for the Wilson
100p (3),

(TrW(C)) ~ exp (—0Smin(C)),

where Spin is the area of the minimal surface defined by
the contour C,

Shin ( / dt/ dBy/ (ww')? — w2w'?,  (6)

with the string profile function w,(t,3) approximated
by the straight—line ansatz:

wu(t,B) = Br1,(t) + (1 = B)@2u(t)- (7)

Here 1 (t) are the four—coordinates of the quarks at
the ends of the string. This approximation is valid at
least for not large excitations due to the fact that hy-
brid excitations responsible for the string deformation
are decoupled from mesonic excitations by the mass gap
of order 1 GeV.

The spin-dependent interquark interaction follows
from the mixed terms of the form ds,, 0x¢ Fyup FrsdT in

Eq. (3),
Lso = / 450 ()T 0 Dy (w0 — 1) + (1 2),
dsp, = €% 0wy (t, B)dpw, (¢, f)dtdB, a,b= {t,0}.
For the ansatz (7) one has:
ds;y = ridtd3, dsix = €igmpmdtdps,
=[r x (%1 + (1 - B)%2)],

and thus the angular momentum enters the interaction
through ds;;. Finally, we introduce the laboratory time
t instead of the proper quark times as dr; = dt/(2u;)

(i = 1,2), where u; stands for the i-th quark energy
[24, 25]. Notice that the proper inertia of the string
is to be taken into account when proceeding from the
quark velocities to the angular momentum variables [26].
However, the effect of the string inertia and the devia-
tion of the quark energy from its mass are important
for light quarks, whereas they are negligible in case of
heavy quarks, so that, for the heavy quarkonium, one
has simply p; = m; and p; = m;%;. Then, by an ex-
plicit calculation, one can arrive at Eq. (1) (the details
of the derivation can be found in Refs. [18, 27]) with the
following identification of the potentials V,,(r), n = 0-4:

Vo (r) = 2/ du/dADAV—H'/ dvD; (r,v),

- _2/ du/ dA (1 - —) D(\,v), (8)

Vi(r) = ;/ dV/O AdAD(\,v) +r/ dvD(r,v),

Va(r) = —2r w/ dvD; (r,v

o= [ o [H 20210y

At large interquark separations, r > Ty, Tg’, these yield
simply:

4a 4qa
Vi) =o+3 5, Vi) =-0 Vi(r) =33,
(9)
4o 32
Va(r) = —rf, Vi(r) = 5 mass®) (r).

In particular, the static interquark potential comes out
from Eq. (9) in the standard “linear+Coulomb” form,

4
Vo(r) = Voo(r) = or — 295 | const.

3r

3. Results and discussion. With the form of the
potentials (8) we are in a position to fit the correspond-
ing lattice data from Ref. [11]. We have the set of four
fitting parameters: {as,0,T,,T,}. In Table we give the
set of our fits. For the fits 1-3 we use the full form of
the potentials (8), the fit 4 demonstrates the relevance
of nonperturbative interactions since only perturbative
part of the potentials V,(r) (n = 0—4) is retained in
this case. Finally, the data were fitted with the help
of the asymptotic large-distance potentials (9) (fit 5).
Comparison of our fits with the lattice data is given by
Figs.1-5 (we use the data from Ref. [11] for the 20340
lattice with the coupling 8 = 6.0 and the lattice spacing
a = 0.093fm).

One can draw several conclusions from Figs.1-5:
i) the data clearly indicates the presence of nonper-
turbative contributions to the potentials even at small
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The set of fits for the lattice data on spin-dependent
potentials taken from Ref. [11]. Eqgs. (8) and (9) are
used for the fits 1-4 and fit 5, respectively

as | 0,GeV? | Ty, fm T, fm
fit1l | 0.16 0.22 0.2 0.2
fit 2 | 0.16 0.22 0.1 0.1
fit 3 | 0.16 0.22 0.07 0.1
fit4 | 0.16 — 0 0
fit5 | 0.32 0.17 - -

<
=
T

[ ey PR
0.2 0.3 0.4 0.5 0.6 0.7 0.8
r (fm)

()-I P B |

Fig.1. The profile of the V;(r) for the fit 1 (dash-dotted
line), fit 2 (dashed line), fit 3 (fat solid line), fit 4 (doted
line), and fit 5 (thin solid line). Lattice data are given by
dots

interquark separations, where the perturbative physics
dominates; ii) although the simplified fit 5 approximates
the data rather well, the fits 1-3 give a better description
of the latter. Thus one concludes that the present data
allow one to study the “anatomy” of the field correlators;
iii) by comparing fits 1-3 with one another one can con-

r (fm)
0.2 0.3 0.4 0.5 0.6
0 L o L o L '
-0.02
—0.04
~0.06}
~0.08}
~0.10f
-0.12f
~0.14}
0.16
—0.18
—0.20L

V! (GeV)

Fig.2. The same as in Fig.1 but for V{(r)
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Fig.3. The same as in Fig.1 but for V3 (r)
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Fig.4. The same as in Fig.1 but for V3(r). The curve for
the fit 2 coincides with that for the fit 1

clude that the data prefer small correlation lengths T
and T, a good description is achieved with them both
being 0.1 fm or below; iv) the theoretical expressions
for V,,(r) (n = 0,1,2) given by our Egs. (8) satisfy the
Gromes relation (2) identically, while the lattice poten-
tials, as was stressed in Ref. [11], violate it. The source
of this violation is not clear at the moment: it may be a
lattice artifact and disappear in the continuum limit [28]
or it may be related to the contribution of higher-order
correlators taken into account differently in different po-
tentials entering the Gromes relation [6]. This question
deserves an additional careful investigation. In particu-
lar, a detailed comparison of the Eichten—Feinberg and
Field Correlator definitions of these potentials is given
in Ref. [29]; v) there is a certain contradiction between
the theoretical predictions and the lattice data for the
potential V4(r). Our form of the potential V4(r) given
by Eq. (8) is consistent with the delta-functional form
of this potential in the limit of the vanishing correla-
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r. (fm)

Fig.5. The same as in Fig.1 but for Vy4(r). The fits 4 and
5 correspond to delta-functions localised at » = 0

tion length (see Eq. (9)). Although, for finite values of
the correlation length, V4(r) is smeared and can become
negative, the small-r behaviour of our fits is essentially
different from that of the lattice data, so this question
deserves additional investigation.

Notice that the values of the correlations lengths ob-
tained in the fits to the data are in good agreement
with the predictions made for the gluelump spectrum
in the framework of the FCM [23]. Indeed, the in-
verse of the correlation length gives the mass of the
lowest gluelump in the corresponding channel. From
the best fit 3 these masses constitute 3 GeV and 2 GeV
for the correlators D(z) and D;(z), respectively. These
should be confronted with the predictions 2.8 GeV and
1.7GeV made in Ref. [23] (after the proper rescaling
from o = 0.18 GeV? used in Ref. [23] to o = 0.22 GeV?
extracted from out fits).

The fact that the vacuum correlation length is small,
less than 0.1 fm, allows one to justify the use of the
so-called string limit of QCD, when this length is set
equal to zero. In this limit, the interaction of colour
constituents in hadrons can be described in terms of the
infinitely thin QCD string with the string action given
by Eq. (6). This approach was successfully used to de-
scribe conventional mesons [25, 30] and baryons [31],
hybrids [32], glueballs [33], and gluelumps [22].

We conclude that the existing lattice data on the spin-
dependent potentials in heavy quarkonia are consistent
with the predictions of the FCM and that the gluonic
correlation length extracted from these data is small,
less that 0.1 fm. The definition and the behaviour of the
lattice potentials V;(r) and V4(r) might need a better
justification and, possibly, some improvements.
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