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We show that there exists a topological phase equal to m for circular quantum dots with an odd number of
electrons. The non-zero value of the topological phase is explained by axial symmetry and two-dimensionality
of the system. Its particular value () is fixed by the Pauli exclusion principle and leads to half-integer values
for the eigenvalues of the orbital angular momentum. Our conclusions agree with the experimental results of
T. Schmidt et al., Phys. Rev. B 51, 5570 (1995), which can be considered as the first experimental evidence
for the existence of the new topological phase and half-integer quantization of the orbital angular momentum
in a system of an odd number of electrons in circular quantum dots.

PACS: 02.40.—k, 03.65.Vf, 73.21.La, 75.75.+a

It is known for a long time already [1, 2], see also [3],
that in certain cases half-integer quantization of the or-
bital angular momentum occurs in molecules. In Ref. [2]
half-integer values of the orbital angular momentum are
associated with the Berry’s geometrical phase 7 that the
nuclear wave function acquires under a pseudo-rotation
around the equilateral configuration of the molecule Nag.
This was apparently the first experimental verification
of the Berry’s phase in high-resolution molecular spec-
troscopy. For reviews on Berry’s phase [4, 5] in more
general context see Refs. [6, 7].

In this paper we show that the half-integer quanti-
zation of the orbital angular momentum may occur also
in circular quantum dots with odd numbers of electrons.
In these systems the electron motion may be considered
as being restricted to two dimensions. 2D geometry
and the assumption of axial symmetry of the confining
potential results in the existence of loops that are not
deformable to a point [8]: the topology of the system
is equivalent to that of a once-punctured plane, cf., [9].
Hence, there exists a topological phase. Since this topo-
logical phase defines a one-parametric set of self-adjoint
generators of rotations, it determines the rotational dy-
namics of the electronic system, cf., [10]. Its particular
value follows from the Pauli exclusion principle. In cir-
cular quantum dots with an odd number of electrons the
topological phase of the ground state wave function takes
the value 7. Below we demonstrate that our conclusions
agree with the experimental results [11]. Based on our
analysis presented in this paper, we believe that Ref. [11]
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may be considered as the first experimental observation
of half-integer orbital angular momenta in a system of
an odd number of electrons in circular quantum dots.

According to [12] (see also [13]) the oscillatory model
with the parabolic confinement

N
Ver= Y m.r2/2 4 VO, (1)

a=1

is a good approximation for low-lying levels in real cir-
cular N-electron quantum dots [14, 15]. Here m, is the
effective mass, r, is the two-dimensional coordinate of
an electron, and the effective confining frequency 2 and
the reference energy level V(©) are phenomenological pa-
rameters. In general Q and V(%) depend on the number
of particles in a quantum dot (cf., Ref. [12]) and the
quantum numbers describing the state of the electronic
system. Within this approach the Schrédinger equation
can be written in dimensionless variables as [16]
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Here,
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is the dimensionless parameter [17] which is determined
by the ratio of the characteristic Coulomb energy of
electron-electron interaction to the mean level spacing in
Mucema B HIATD® Tom 88

Beim. 9—10 2008



Quantum dot version of topological phase . .. 787

the confining potential. We employ the following nota-
tions: € is the effective dielectric constant, g = m./me,
ap is the Bohr radius, Eg = mce*/2h%, —e and m, are
charge and mass of a bare electron. The reduced energy
e(N) = [E(N) -V () (N)]/Ey and the dimensionless co-
ordinate p, = r, /ag are determined by the characteristic
energy and the characteristic size of the system

1
B _ pEp B 2> \* 2 ,
Eo—QhQ—ezQz,ao—(em*Qz> —#QG,B.
(4)

In virtue of the axial symmetry of the problem, the re-
duced energy e(N) = ep(IN) can be numbered by values
of the conserved total orbital momentum M, which is

an eigenvalue of generator of rotations L = —i0/0yp,
o is the angle of rotation of the system as a whole,
0< o< 2m.

It is well known that the differential operator L be-
comes self-adjoint, i.e. determines an observable, if it is
defined on the Hilbert space of wave functions obeying
boundary conditions, which in their most general form
read [10],

Y(271) = e®P(0), 0<O<2m (5)
(see also a recent paper [9]). The topological phase §
arises as a result of rotation of the system around the
axis of symmetry by 27. Unlike the Berry’s phase [4, 5]
which is acquired by a wave function in the process
of evolution of a system determined by a Hamiltonian,
the topological phase 0 itself determines an operator Le
from a one-parameter family of self-adjoint operators
and, hence, the unitary operator U, which describes the
rotational dynamics of the system similarly to the evo-
lution operator,

A

T(p + 1) = Ua(r) T (p) = explirLe) (p).

In virtue of Eq. (5), the eigenvalues of the generator
Ly are given by

M=y4+m, m=0,%£1,...,0 =27ny,0<y <1, (6)
and its eigenfunctions
¥r(p) = exp(iMy)/V2m (7)

implement an irreducible representation of the two-
dimensional rotation group SO(2).

The specific value of 7 is determined by additional
physical reasons. If we require that the wave function
remains unaltered after the rotation of the system by
2w, then v = 0 and the eigenfunctions (7) implement
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a single-valued representation of SO(2). In this case
the orbital angular momentum eigenvalues are (up to
the factor of h) integers. In cases where v is a ratio-
nal number the representation is multiple-valued [8] and
the angular momentum quantization may be fractional.
However, if the system is invariant with respect to time
inversion, only two cases v = 0 or vy = 1/2 can be real-
ized [9].

We will show now that the choice between two pos-
sible values of 7 for our problem is fixed by the Pauli
exclusion principle. Formally, Eq. (2) is equivalent to
the Schrodinger equation for N particles with masses
2Q?. We are interested in the case of an odd number of
electrons N > 3. In the limit ) — oo the ground state is
realized by a rigid configuration of electrons minimizing
the potential energy. This configuration is invariant un-
der the 27 rotation around the symmetry axis. This may
be used to understand the quantization of the angular
momentum operator. Indeed, the overall phase acquired
by the ground state wave function after the rotation is
determined by the total momentum J. The 27 rotation
of a two-dimensional system is obviously the identity el-
ement of the symmetric group Sy and thus belongs to
the alternating group Ay of even permutations of the
set {1,..., N}. Hence, the 27 rotation of the system is
equivalent to an even number of pairwise transpositions,
and according to the Pauli exclusion principle the wave
function do not change:

exp(i2nJ) =1, J=M+X=0,£1,+2,... (8)
Here the total momentum J is represented by the sum
of the orbital and spin angular momenta. For the odd
number of electrons the spin quantum number ¥ is half-
integer. Thus the orbital angular momentum M must
also take a half-integer value. According to Eq. (6) this
implies that v = 1/2 or that the system is characterized
by the topological phase 8 = 7.

Consider now the case of three electrons. If the
total spin number ¥ = +1/2, then M can take any
half-integer value. However, the situation is different
if ¥ = £3/2. Then there is an additional symmetry
in the problem. The symmetry group of such system
is C3y which is isomorphic to the symmetric group Ss.
The group Cj3, consists of rotations about the symmetry
axis by multiples of the angle 27/3 (the C3 group) and
reflections in the three bisectrices of the triangle. Cj
is isomorphic to A3 and thus the wave function of the
system at () — oo does not change also if it is subjected
to a rotation by 27 /3. Thus,

exp(iJ2r/3) =1, J=M+3%=0,+3,46,... (9)
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This means that M can take the values M = +(3 +
+6k)/2,k=0,1,2,....

To arrive to these conclusions we have considered the
classical limit () — oco. However, if one varies the pa-
rameter () adiabatically, the quantum numbers M and
¥ cannot change. Therefore our result is valid also at
@ ~ 1 which is typical for real quantum dots. More-
over, it can be easily shown that this is true in the limit
@ — 0 also. Indeed, the variables in the Schrédinger
equation can be separated exactly in this case. Then,
taking proper account of the Pauli exclusion principle
one arrives after not complicated calculation to the fol-
lowing result for a three-electron quantum dot: minimal
energy corresponds to the state with M =1/2,% =1/2.

Now we show that our conclusions are in excellent
agreement with the experiment of T. Schmidt et al.
[11]. The authors of Ref. [11] measured the ground state
energy E(N) of N-electron circular quantum dots in
GaAs-based heterostructures in a perpendicular mag-
netic field 0 < H < 16T for N = 1 + 30. To explain
the data, we should modify the calculation of the spec-
trum of a quantum dot in order to take into account the
magnetic field. For this purpose it is enough to make
the changes in Eqgs. (2)-(4): (i) Q(N) — Q5 (N), where
Qr = /P +w? and wy, = eH/2m,c is Larmor fre-
quency; (ii) @ = Qr = (u/€*)/*(Ep /hQy)"/?; and (iii)
take into account the Zeeman shift (we use the symmet-
ric gauge for vector potential A = 1/2[H x r]). This
way we find for the energy of a quantum dot

Eyms(N; H) = em(N; H) QLA (N) —
— (M + pgZ)hwr + Vgx(N), (10)

where g is the effective Lande factor and ep(N; H) re-
places ep (V) in Eq. (2) after the change Q@ — Qr.

It is very important that the first term in the RHS
of Eq. (10) depends on H?2. Therefore, in a weak field,
wr < Q(3), the derivative of the energy with respect to
magnetic field is determined for the most part by the
Zeeman energy

dEME eh
=— M by 11
dH Heo 2m*c( +l‘l’g )1 ( )

and does not depend on the shape and parameters of the
confining potential. In the experiment of Ref. [11] the
typical values of the parameters are e = 12.5, 4 = 0.067,
and g = 0.44. Thus the coefficient in the RHS of Eq. (11)
is equal to 0.864 (measuring Epsx in meV and H in T).
On can see from Eq. (10) that at H = 0.5 T the quadratic
term in the expansion of Epss; becomes of the order of
the Zeeman energy. Therefore the weak-field interval is
0<H<O05T.

The results of calculation of the effective Coulomb
energy E(3,H) — 3E(1, H), which was measured in
the experiment [11], are shown in Fig.1 for the weak-
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Fig.1. The effective Coulomb energy E(3) — 3E(1) versus
magnetic field H for weak field, wz, < Q(3). The solid and
the dotted lines show the slope of E(3,H) — 3E(1,H) at
H — 0 calculated according to Eq. (11) for M = 1/2 and
M = 1 respectively. The experimental points are taken
from Ref. [11]. The size of the circles corresponds to the
size of experimental points in Fig.3 of Ref. [11] and re-
flects experimental error of approximately 0.025 meV. The
dashed line gives the results of calculations according to
Eq. (10) in approximation (12) with parameters i(3) =
5.21meV, V©(3) = —24.0meV and /Q(1) = 3.60 meV

field limit. For the energy of a one-electron quan-
tum dot we adopt the expression E(1,H) = hQg(1) —
— pghwr /2, where AL (1) is the Fock-Darwin energy
and AQ(1) = 3.60meV [11]. The experimental points
are taken from Ref. [11]. The diameter of the circles
corresponds to the size of experimental points in Fig.3
of Ref. [11] and reflects experimental error of approx-
imately 0.025meV. Two direct lines in Fig.1 show the
slope of E(3,H) — 3E(1,H) at H — 0 calculated ac-
cording to Eq. (11). For the solid line M = 1/2 and for
the dotted one M = 1. It is clear from Fig.1 that, unlike
the value M = 1 for the orbital angular momentum con-
sidered by the authors of Ref. [11], the value M = 1/2
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agrees with the data quite well. Deviation of the exper-
imental points from the linear law (11) at H > 0.2 T is
explained by the influence of the quadratic term in the
weak field expansion of Eprs.

The solution of Eq. (2) valid for a more broad range
of magnetic fields H can be obtained in the form of
an expansion over the small parameter 1/Qr ("1/Q-
expansion” method [16]). The first three terms of this
expansion for the energy of the ground state and the
nearest excited state read

€Mmy (3) = 3.9311 + (3.0908 + [m1|)Q " +
+ [0.1908(M + m1)? + 0.2435]Q > (12)

Here m; = +M? is the eigenvalue of the orbital an-
gular momentum of the center of mass of the 3-electron
system. The results of calculations for the ground state
my = —M = —1/2 according to Eq. (12) are shown in
Fig.1 by the dashed line.

The agreement between the data and our calculations
leads us to believe that the results of the experiment
[11] unambiguously specify the quantum numbers of the
ground state of a three-electron quantum dot right up to
the point of the first crossing, or up to such value of mag-
netic field H(") when the symmetry of the ground state
is changed [18]. Quantum numbers of the ground state
after the first crossing cannot be chosen a priori because
of the unknown dependence of the phenomenological pa-
rameters Q and V() in Eq. (1) on the quantum numbers.
Varying these parameters we can obtain an excellent fit
of the experimental data [11] by the results of the 1/Q-
expansion. Certainly, in the experiment [11] @ ~ 1, or
are even slightly less than 1. However, it was shown
in Ref. [16] that for the case of two-electron dots the
first three terms of 1/Q-expansion provide 3%-accuracy
even at ) < 1. Since the relative contribution of the
Coulomb repulsion for three-electron quantum dots is
greater than for two-electron dots, we believe that the
accuracy of approximation (12) in the region @ ~ 1 is
of the same order at least up to the first crossing.

The result of the fitting procedure is shown in Fig.2.
The experimental points are taken from Ref. [11]. We
have found the locations of three crossings in the range
0 < H<8Tat H = 25T, H) = 43T and
H{" = 6.2T. Quantum numbers M and % are cho-
sen according to condition (8) everywhere except the re-
gion between the first and the second crossings, H\*" <
< H < H{™, where the condition (9) was used. The
values of effective confining frequencies h(3) are given

2)This equality follows from the requirement of the wave func-
tion invariance with respect to an even number of pairwise trans-
positions.
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Fig.2. Comparison of the experimental data (solid circles)
of T. Schmidt at el. [11] for E(3) — 3E(1) with the re-
sults of calculations according to Eq. (10) in approxima-
tion (12)(the dashed line). The numbers give the values
of the total electron spin and orbital angular momenta,
and the effective confining frequencies. Arrows indicate
the crossing points

in Fig.2, and the values of the parameter V(%) (3) in meV
for successive intervals between the crossing points are
—24.0, —30.4, —37.9, —126.8. One can see that the the-
oretical curve is in a very good agreement with the ex-
periment.

We believe that the results shown in Figs.1,2 repre-
sent convincing evidence in favor of our interpretation
of the experiment [11]. Therefore, we regard the data
presented in Ref. [11] as the first experimental demon-
stration of the existence of theoretically admissible half-
integer values of the orbital angular momentum in two-
dimensional quantum systems. It is worth emphasizing
that the choice between the integer and the half-integer
variants of quantization of orbital angular momentum in
our problem is dictated by the Pauli exclusion principle.

However, there is a question whether our result con-
tradicts the fundamental laws of quantum mechanics.
Whatever is the motion of electrons in the quantum dot,
the whole system is three-dimensional, and thus its or-
bital angular momentum must be integer. The question
is where the extra half-integer orbital angular momen-
tum is concentrated in this system.

Certainly, the additional half-integer orbital momen-
tum belongs to the macroscopic subsystem of the whole
heterostructure not relating to the system of electrons
in the quantum dot. This problem is akin to the back-
reaction problem for motion of a system of microscopic
particles in a classical background. In our case, just the
heterostructure, which is a macroscopic device, creates
the two-dimensional classical background for the elec-
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trons of the quantum dot. In the standard situation
when the whole structure is fixed, the half-integer or-
bital angular momentum which arises in the subsystem
of electrons after tunneling of an odd electron into the
dot is compensated by the momentum transferred to the
macroscopic device. The device is at rest with respect
to the Earth and therefore the transferred momentum is
unobservable. If an exotic experiment with a quantum
dot immersed in a pendent heterostructure could be held
on, then the device would start rotating upon loading
an odd electron into the quantum dot. The total or-
bital angular momentum would be of course integer but
the angular momentum transferred to the macroscopic
subsystem would stay unobservable.

It is worth noting that half-integer quantization of the
orbital angular momentum in molecules [2, 3] is bound
up with the existence of the topological Berry phase and
was observed only for the slow subsystem of a molecule.
Clearly, the total momentum of the molecule remained
integer. In our case the quantum dot also is a subsys-
tem of the whole heterostructure which in contrast to
the molecule is a macroscopic object.

In conclusion, we have predicted the existence of a
new topological phase along with half-integer quantiza-
tion of the orbital angular momentum for 2D axially
symmetric systems with an odd number of confined elec-
trons. We argue that the experimental data for circular
quantum dots in a strong magnetic field [11] is in agree-
ment with this statement.
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