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Plasma wave propagation in a pair of carbon nanotubes
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Plasma waves which propagate in a pair of parallel metallic carbon nanotubes are studied within the frame-
work of the classical electrodynamics. Electronic excitations over the each nanotube surface are modeled by
an infinitesimally thin layer of free-electron gas which is described by means of the linearized hydrodynamic
theory. An explicit form of plasmons dispersion in terms of interaction between the bare plasmon modes of
the individual surfaces of the nanotubes is presented in this Letter.

PACS: 41.20.Jb, 42.25.Bs, 73.22.Lp

Among outstanding aspects about carbon nanotubes,
the study of their collective electronic excitations may
be very important in understanding the electron interac-
tions in carbon nanotubes as well as the characteristics of
their electronic structures. Collective excitations in the
single and multi-walled carbon nanotubes have studied
by several authors with various theoretical models [1-
19]. Among different theoretical models, hydrodynamic
model has found an important place owing to their sim-
plicity and physically intuition. Various versions of the
hydrodynamic model of the dielectric response of car-
bon valence electrons are becoming increasingly used
to study collective excitations in such structures [9—-19)].
The idea to apply a macroscopic hydrodynamic descrip-
tion to the collective dynamics of the many electron sys-
tems was suggested by Bloch [20] as a generalization of
the hydrostatic Thomas-Fermi theory. Using this simple
hydrodynamic model, Fetter found plasma oscillations
and screening for electron layers [21].

On the other hands, Schroter and Dereux [22], an-
alyzed the propagation of plasmon on hollow metal-
lic cylinders with a dielectric core, taking into account
retardation. Kushawa and Djafari-Rouhani [23], used
Green’s function theory for calculating dispersion rela-
tions for coaxial and multiaxial structures with arbitrary
dielectric constants with applications to quantum wire
and carbon nanotubes. In the cases mentioned, by con-
trast with planar and spherical geometries, do not allow
independent solutions for TM and TE modes except for
the case of modes with no angular dependence. The elec-
tromagnetic fields propagating in such geometry are, in
general, a linear combination of these two modes.

It is well known that single-walled carbon nanotubes
tend to stick into bundles (containing 2 — N parallel car-
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bon nanotubes) or ropes during their syntheses [24]. Re-
cently, Lien and Lin [6], described the low-energy plas-
mon excitations in a pair of carbon nanotubes within
the tight-binding model. Also, Gumbs and Balassis [7],
in the non-retarded limit, studied the collective excita-
tions in a pair of parallel nonoverlapping cylindrical nan-
otubes by using the random-phase approximation and
obtained a high-frequency, corresponds to in-phase lon-
gitudinal electron density oscillations along the axes of
the nanotubes and a low-frequency that is an out-of-
phase collective excitation of the carriers on the two nan-
otubes. In this Letter, we extend the previous work [17]
to describe the plasma waves with the transverse mag-
netic mode which propagate in a pair of parallel metallic
carbon nanotubes.

Let us consider a pair of parallel nanotubes with radii
a; and ay which density free-electron fluid over the each
cylindrical surface (per unit area) is n$ and n3, respec-
tively. The distance between the two axes will be labeled
d, where d > a; + a2, and the used coordinates are illus-
trated by Fig.1. The origin of the cylindrical coordinate

Fig.1. Schematic of a pair of parallel nanotubes with radii
a1 and a2, the axis-to-axis separation begin d

x = (p, ®, z) be located at the point z = 0 on the axis
of the 1st nanotube. Assuming that the n;(x;,t) be the
perturbed density (per unit area) of the homogeneous
electron fluid on the j-th wall (with j = 1,2), due to
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propagation of plasma wave with frequency w, along the
axis z.

Based on the linearized hydrodynamic model, one
obtain the linearized continuity equation, for each nan-
otube,

6".7 (xja t)
ot

and the linearized momentum-balance equation,

+ "(J]VJ : uj(Xj,t) =0, (1)
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where Eﬁ (xj,t) = Ele, + Eg;jé¢ is the tangential com-
ponent of the electromagnetic field on the j-th cylindri-
cal surface, e is the element charge, m. is the electron
mass, u;(x;,t) is the velocity of the electrons residing
on the j-th shell and V; = €,(8/9z) + afl“ #(0/0¢;)
differentiates only tangentlally to that surface In the
right-hand side of Eq. (2), the first term is the force on
electrons due to the tangential component of the total
electric field, evaluated at the nanotube surface r = aj;,
the second and third terms arise from the internal inter-
action force in the electron gas with a; = wn$h?/m? is
the square of the speed of propagation of density distur-
bances in a uniform 2D homogeneous Thomas—Fermi
electron fluid and 3 = h?/4m2.

In the transverse magnetic wave, the magnetic field
component is not in the longitudinal direction (B, = 0)
but in the transverse direction (B,, By # 0). Using
the coordinates illustrated by Fig.1 and Maxwell’s equa-
tions, we may obtain the following solutions for the lon-
gitudinal electric field E, in the three regions,

Im K‘pl) zm¢1ei(quwt)

El(x,t)= Ap———
(x, Z T, (kan) (p1 < a1),
m=—00
3)
EZ X t Z DmIm K/p2) zm¢gei(qz7wt) (pz < a2)
= I (kas) ’
(4)
and
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Km(kp1) ;
Ei(x,t) = P-JL—%WW+
z( ) m;oo me(K',al)
Km(kp2) ; i(qz—
C m imez | Li(gz—wt)
+ miKm(mzz)e e
(p1 > a1 and p2 > a2), (5)
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where I,,(z) and K,,(z) are the modified Bessel func-
tions, k? = g2 — w?/c? and c is the light speed. On the
other hands, after eliminating the velocity field u;(x;,t),
from Eq. (1) and (2) and replace the quantity n; by ex-
pression of the form

(%, ) Z Njm zm¢jei(qz—wt), (6)

we finds
Njm = "; o, - B, 7)
where qf, = g¢é, + (m/a;)é, and Q; = w? —
—a; (K +w?/ +m?/a3) — B (K* + w?/c® + mz/a?)2 .

Now, we apply the boundary conditions [17] at the sur-
face of the first wall, at py = a; and express the term
depending on ps and ¢» in the outer cylinder in terms
of p; and ¢;, using an addition theorem for modified
Bessel functions [25],

+oco
Ko (kps)ei™®> = Z Kiym(kd) I (kpy)e®r.

I=—o0

After doing some algebra, in the low-frequency electro-
magnetic wave region (k = ¢ > w/c), at p1 = a1, we
obtain the matrix form,

B = MC, (8)

where B and C are vectors whose components are B,
and C,, respectively and the matrix M has the elements

0363y Kmin(rd) K (kay) I2 (<ay)

M, =(rk2+m? /a2
(k7+m /al)wz—w% K, (ka2)

(9)

In an analogous way, we use the boundary conditions at
the surface of the second wall, at p2 = as. We obtain,

C = NB. (10)

We note that the matrix N is obtained from M
through permutation of the index 1 and 2, where wfp =
= e’nY/egmea; and

wi(m, k) = aj(k

J
+ w]paj(

?+m?*/af) + B(k* +m?/a3)* +
2+ m?/a2) I (kaj) Km(kas), (1)

are the squares of the plasmon dispersion on the cylin-
ders j =1 and 2. From Eq. (8) and (10), one obtains

(MN — 1)B = 0. (12)
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The zeros of the determinant of the matrix (MN — 1)
correspond to normal mode frequencies of the plasmon
excitations on the surfaces of the two coupled cylinders,
where the determinant is of infinite dimension. To ob-
tain a simple form of plasmons dispersion in terms of
interaction between the bare plasmon modes of the in-
dividual surfaces of the tubes and compare with two-
walled carbon nanotubes, in the following we consider
plasma wave which propagate parallel to an axial direc-
tion (z-direction) of the two parallel nanotube, so that
from Eq. (12), by set m = 0 and n = 0, we obtain two
branches for w defining the resonant frequencies of the
plasmon excitations which are clearly separated into a
high-frequency, w, (0, k), and a low-frequency, w_(0, ),

2 2 2 _ 2\ 2
w2 (0,k) = ) + \/(u) + A2, (13)

2 2
where

A? = w} w3, (kay)?(ka2)? [Ko(kd)Io(ka1)Io(kas)]?
(14)

gives the interaction between two parallel nanotubes.
This interaction leads to shifts of the plasmon energies
between the two free plasmon modes. When d decreases,
the interaction will be strong and the splitting of the plas-
mon will be large. When d — o0, the tubules decouple
(i-e., A =~ 0) and oscillate independently of each other
with frequencies w; and wy [see Eq. (11)]. The disper-
sion relations given by Eq. (13) has a structure similar to
that of resonant frequencies of the plasmon excitations
in two-walled carbon nanotubes and metallic nanotubes
[17, 26]. In particular, in the long-wavelength limit,
when each nanotube has the same radius, if we neglect
the retardation effects, we obtain

22 2.2
9 e‘ar’ , o Ka e‘ak
0,k x0) ~ In— | + X
wi(0,k Qegme (ng +n3) |In 2 | oMo
1 o 0\2 Ka o 0,0 kd o Yz
X Z(nl —ny) |1H7 |* +niny | 1117 | , (15)

where the lower-energy plasmon exhibits a quasi-
acoustic (linear) dispersion that is quite similar with
the result obtained in random-phase approximation
[7]. This quasi-acoustic plasmon mode seems to be
a common occurrence when a splitting of plasmon
energies happens due to the tubule interactions [7,17].
To illustrate the effect of two parallel walls on reso-
nant frequency and compare with two-walled carbon
nanotubes, we choose an example of a pair of carbon
nanotubes with radii a; = 4Aa and ay = 6Aa with
d = 12Aa, where Aa = 3.4A4°. To see clearly behavior

of the two groups of resonant plasmon dispersions we

plot dimensionless frequency w/wp, versus dimension-

less variable kAa in Fig.2, where n{ = n9 = ng and
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Fig.2. The dimensionless plasmon frequencies w/w, versus
dimensionless variable kAa in a pair of parallel nanotubes
with radii a1 = 4Aa and a2 = 6Aa are compared with the
two-walled nanotubes from Ref. 17

wp = (e?ng/eomeAa)/?. Tt is clear that in two-walled
carbon nanotubes the splitting of the plasmons is large
compared with a pair of parallel carbon nanotubes. It
can be seen that the dispersion curves will approach
one for small wavelengths.

In summary, we have used the linearized hydrody-
namic model in conjunction with Maxwell’s equations
to describe the plasmonic response of a pair of metallic
carbon nanotubes. We have found an analytical formal-
ism of plasmons dispersion, at low frequencies, in terms
of interaction between the bare plasmon modes of the in-
dividual surfaces of the nanotubes. In long wavelength
limit, if we neglect the retardation effects, the result ob-
tained in this way is quite similar with the result ob-
tained in random-phase approximation.
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