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Spin relaxation in the impurity band of a 2D semiconductor with spin-split spectrum and hyperfine inter-
action in the external magnetic field is considered. Two contributions to the spin relaxation are shown to be
relevant: the one given by optimal impurity configurations with the hop-waiting time inversely proportional to
the external magnetic field and another one related to electron motion over large distances. The average spin

relaxation rate is calculated.
PACS: 71.55.Jv, 71.70.Ej, 72.25.Rb, 85.75.—d

Spin dynamics in semiconductors has attracted much
attention in the last decades [1, 2]. In particular, a num-
ber of experimental [3—9] and theoretical [10 - 15] works
are devoted to the investigation of spin relaxation in the
impurity band of a semiconductor. An increasing in-
terest to this problem is motivated by experimental ob-
servation of up-to-microsecond spin lifetimes in n-doped
bulk GaAs and GaAs/AlGaAs heterostructures, which
makes them good candidates for the use in possible spin-
tronics applications.

Spin relaxation in the impurity band is usually
driven by hyperfine interaction or spin-orbit coupling.
Since the nuclear spin relaxation time is very long (7n ~
~ 0.1 ms), hyperfine interaction can be treated as a ran-
dom-in-space static magnetic field with the associated
spin precession frequency wy = A/vV/N, where A is the
hyperfine coupling constant and NV is the number of nu-
clei within the volume occupied by the wave function [16)
(the directions of the random magnetic field for electrons
located on different impurities are not correlated). For
spin-orbit coupling, the associated spin precession fre-
quency wp is a power function of the electron momen-
tum p [17-19] (in the 2D case, wp is linear in p [19]).
As a result, spin-orbit coupling leads to spin rotation in
the process of phonon-assisted hops from one impurity
to another by the angle ¢ ~ wp,Ar/vy, where Ar is
the distance between impurities and pg = mvg is the
under-the-barrier momentum.

There can be several mechanisms of spin relaxation
in the impurity band. Like in quantum dots (QDs), spin
relaxation might be driven by phonon-assisted transi-
tions between Zeeman sublevels of the ground state of
an impurity. This mechanism of spin relaxation is well
studied in QDs [20, 21]. For isolated shallow donor or
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small QD, it gives spin relaxation times of the order of
1s at fields B &~ 1T (Zeeman energy £z ~ 0.3K) [22, 23].
Other mechanisms of spin relaxation involve electron
hops from one donor to another. For such mechanisms,
the spin relaxation rate can be roughly estimated as
[7, 10, 24]:

1/7s = Wk Thes 1/Ts = ¢*/The, (1)

for the case of hyperfine interaction and spin-orbit cou-
pling respectively (here 73, is the characteristic hop wait-
ing time). These equations are based on the classical pic-
ture of the angular spin diffusion in a random magnetic
field (in the case of hyperfine interaction the direction of
spin precession changes randomly after each hop; in the
case of spin-orbit coupling the spin rotates in a random
direction in the process of a hop). However, this picture
does not account for the exponential variation of the hop
waiting times:

Th1 = To exp (2Ar/a), (2)
The = To exp (2Ar/a + AE/T) 3)

for phonon emission and absorbtion respectively (here
Ar is the distance between impurities, A€ is the dis-
tance between their energy levels, a = €h?/2me? is the
Bohr radius, and T is the temperature). The main con-
sequence of such inhomogeneity is that it is impossi-
ble to introduce an universal time scale for the system
under consideration. This fact is confirmed by about
ten-fold decrease of the experimentally measured spin
correlation time in the bulk GaAs at the crossover from
hyperfine-interaction-induced to spin-orbit-induced spin
relaxation (see Fig.3 in Ref. [7]). The effects of the in-
homogeneity on spin relaxation in the absence of the
external magnetic field were considered in Refs. [13, 14]
for the systems with spin-split spectrum. In particular,
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it was found that there are two essentially different con-
tributions to spin relaxation: the one related to electron
hops over the pairs of impurities with the size of the or-
der of the Bohr radius and another one related to the
motion over large distances. In Ref. [9], the dependence
of the spin relaxation rate on the external magnetic field
was measured experimentally in the impurity band of
the bulk GaAs. It was found that the relaxation time
first increases, then decreases, then increases again as a
function of the magnetic field (see Fig.3 in Ref. [9]).

In this letter, we calculate the average spin relaxation
rate for the mechanisms described above in the presence
of the external magnetic field B. The use of the aver-
aged relaxation rate is justified when relaxation is slow
enough so that an electron can walk over a large distance
during the spin relaxation time 75 (in the opposite case
the spin relaxation is governed by escape from the re-
gions with slow relaxation to the regions with fast relax-
ation [14]). The corresponding condition is [14] 75 > 7¢
(here 7¢ = 19 exp (C&p) is the hop waiting time for so-
called critical bond [25], & = {/4L2W/a2T, C is the co-
efficient of the order of unity, W = e?/eL, is the width
of the impurity band, and Ly = ngl/ ? is the average
distance between impurities). We also assume that spin
precession in the external magnetic fields is sufficiently
fast Qo7s > 1 (here Qy is the spin precession frequency
in the external magnetic field). In this case, the compo-
nents of the spin perpendicular to the magnetic field are
suppressed due to fast precession, and hereafter they will
be neglected. Finally, we assume that the temperature
is sufficiently small so that we can neglect activation to
the conduction band, assume that AQ¢ < T', and neglect
electron-electron interaction.

Our main point is that over a wide range of parame-
ters the main contribution to the spin relaxation is given
by the pairs of impurities with the hop waiting time:

The R 1/$0. 4)

Indeed, a common feature of the relaxation mechanisms
based on the angular spin diffusion in a random mag-
netic field is that they are suppressed by applying a lon-
gitudinal magnetic field with the associated spin preces-
sion frequency larger than the inverse correlation time of
the random magnetic field. In the simplest case of a pair
of impurities with the hop waiting times 7,1 = Th2 = 71,
(A€ <« T), the spin relaxation rate is proportional to
AD?7,/ (14 Q377), where AQ is the spin precession
frequency in the random magnetic field (in the case of
hyperfine interaction A2 ~ wy; in the case of spin-orbit
coupling AQ =~ Qy¢, as shown below). The contribution
of the pairs to the spin relaxation rate increases exponen-
tially with Ar for 7, < 1/€Qg and decrease for 7, > 1/Qy.

IIucema B MRITP® Tom 88 BRIm. 11-12 2008

Taking into account Egs. (1) and (4), one can estimate
the spin relaxation rate on the pairs of impurities as:

I/TS’ = lez\l'/QOa ]-/TS' = V¢2QOa (5)

for the case of hyperfine interaction and spin-orbit cou-
pling respectively (here v ~ (a/Lg)* T/W is the share
of the optimal pairs). At sufficiently small magnetic
fields the relaxation is due to electron motion over large
distances.

Let us proceed to the rigorous formulation of the
problem. We start with the system with spin-split spec-
trum. The Hamiltonian of the system is

) 2

Hy = ;)_m + U (r) + ho€Q2o/2 + hoap/2mLs, (6)
where U (r) is the impurity potential, Lg is the length
characterizing the strength of the spin-orbit coupling, &
is the dimensionless tensor with the components of the
order of unity, and o is the vector of Pauli matrices. The
last term on the right-hand side is the combination of
the Bychkov-Rashba spin-orbit coupling [17] and Dres-
selhaus spin-orbit coupling averaged over the electron
motion in the direction perpendicular to the quantum
well [18, 19]. For the following consideration it is conve-
nient to make a transformation, which cancels spin-orbit
coupling to the first order in parameters 1/Lg and Qq
26, 27):

ﬁ-l — eia&r/2LSIA{efia'c‘xr/2L5. (7)
As a result,
A p2
Hy = o T U () + 1€20/2 + h[Q0 x &r/Ls] /2.
(8)

Let us consider spin relaxation on a pair of impurities
caused by spin precession in the random magnetic field.
From the Hamiltonian (8) one can derive an equation,
describing spin dynamics:

8S/0t = [(Q + AQ (1)) x 8], 9)

where AQ (t) = [ x ar (t) /Ls] and the position of an
electron r (t) takes two values: r; and ry (here ry 2 are
the positions of the impurities). To find the random field
correlator k (t) = (AQ (t) AL (0)), one needs to calcu-
late the Green function Gj; (t) of the kinetic equation for
an electron on a pair of impurities:

dny/dt = —dny/dt = ny/Thy — 1 /Th1,  (10)
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where n; o are the probabilities to find an electron at
impurity 1 and 2 respectively. Using the Green function
of this kinetic equation, we get:

K (t) = . Z AQ (I‘i) Gij (I‘,) Q (I‘j) Njo =
o AQ?

= W exp (_t/Th) ’ (11)

where AQ = [Q¢ x &Ar/Lg], Ar = r; — ry is the
size of the pair, 1/7, = 1/7p1 + 1/7h2, and ny =
= 7hi/ (Th1 + Th2) is the equilibrium probability to find
an electron at impurity 7 (¢ = 1,2). Treating the term
proportional to AL (t) in Eq. (9) as a perturbation and
using Eq. (11), we get the following evolution equation
for the component of the spin parallel to the external
magnetic field:

85 /0t = — / ko (#) cos (Qt') Sy (6 — ) de'. (12)

The spin relaxation rate on a pair of impurities is

AQ2 Th

Urs (An A8) = 447 (AE /2T) 1+ Q272

(13)

Depending on the strength of the external magnetic
field, several regimes can be realized. In the case
Qo < 1/70, the main contribution to the spin relaxation
comes from the pairs of impurities with |AE| < T and
Th & 1/Qq (as follows from Eq. (13), this contribution is
proportional to the first power of the external magnetic
field). The average spin relaxation rate is

1/7s = / 1/7s (Ar, AE) dArdAE /WIS (14)

Substituting Eq. (13) into Eq. (14), we get:

1 ™ T (a a)’ 3 1

E = 3_290W (L_SL_d) In (QOTO) g(eo). (15)
Let us estimate the spin relaxation rate for GaAs-based
quantum well. In this case, Bohr radius a =~ 50 A, Bohr
energy & ~ 200K, and we assume that spin relax-
ation length Ls = 1000 A, donor concentration ng =
= 10! cm—2, magnetic field B = 1T, and In(1/Qp7) ~
~ 3. In this case, 1/75 ~ 7-10%s71.

In the case Q¢ > 1/70, we can neglect the unity in
the denominator of Eq. (13). As a result,

1 [eg X &Ar/Lgs]” exp (—2Ar/a)

L/rs (Ar, A8) = 1 + exp (AE/T)

(16)

In this case, the main contribution to spin relaxation is
from the pairs with Ar < a and |AE| < T'. Substituting
Eq. (16) into Eq. (14), we get:

1 3721 T (a a)\?
— = (== . 1
oW (Ls Ld) g(eo) ( 7)

Thus, the spin relaxation rate is saturated at large Q.
In deriving Eq. (15), we assumed that optimal pairs
are effectively separated from the rest of the system,
i.e. that an electron makes many hops over a pair be-
fore leaving it. For this assumption to be valid, it is
required that Q97¢ > 1. In the opposite case, electron
motion over large distances gives the main contribution
to spin relaxation. In this case the spin relaxation rate is
proportional to the electron diffusion coefficient [13, 14]:

1/7s ~ D ~1/7¢. (18)

TS 4

The influence of the external magnetic field on the dif-
fusion coefficient is well known [25]. At low fields
Re > a&y (here Rg = hc/eBa is the cyclotron radius
and a&p is the optimal hopping length [25]), it can be
described in terms of bending of the tunnelling electron
trajectory by the external magnetic field perpendicular
to the quantum well, which effectively increases the dis-

tance between impurities:
1 (aC&\’
1+ — . (1
* 210 ( Ro ) (19)

a

1/rs (H) = (1/75) exp [—%0 (%) (%)3] . 0)

aCé — aC¢; (H) = aC&

As a result:

For GaAs, the exponent in Eq. (20) can be estimated as
0.04C (B/1T)? (1K/T) (1011 em~2 /ng)"/>.

In the regime described by Egs. (15) and (17), bend-
ing of the tunnelling electron trajectory leads to the de-
crease of the optimal pair size and, consequently, to the
decrease of the probability to find such a pair, while the
relaxation rate on an optimal pair remains unchanged.
As a result, 7¢ does not change much due to bending of
the electron trajectory as long as R¢ is larger than the
optimal pair size R¢c > a.

Next, let us consider the spin relaxation caused by
hyperfine interaction. In this case, Eq. (13) still can be
used with the replacement AQ — AQ' = (4/3)1/2 WN.
Using Eq. (13) and following the same procedure as be-
fore, we get:

2 2 2
1 _ AT/ a In 1 , (21)
s 3 NQuW \ L4 Qoo
2 2
i _ 47In 2 A2 Z a (22)
TS 3 NQgro W \ Lg
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for the case Qo < 1/79 and Q¢ > 1/79 respectively. In
GaAs, A ~ 2-10''s™!, N = 500Ny, Ny, is the number of
atomic layers in the quantum well, and other parameters
are given after Eq. (15). Substituting these parameters
into Eq. (21) and assuming that N = 3, we get the
following estimate: 1/75 ~ 5 - 10%s71.

In the case of small magnetic fields Qo7¢ < 1 the
spin relaxation rate can be estimated as

1/rg = / (42t/N) dP(t), (23)

where P (t) is the probability for an electron to spend
time ¢ at an impurity. This probability can be replaced
with the probability that an impurity is separated from
the rest of the system by the distance (a/2)1n (¢/7) in
the coordinate space and T In (¢/7) in the energy space.
Assuming that the form of the surrounding empty area
is given by 2Ar/a + AE/T < In[t/7o], we find the size
of the empty area to be V = — In®[t/79] Ta?27/6, and:

P(t)=e V/WIi = exp (—In® [t/mo] 27/3€3) . (24)

Substituting Eq. (24) into Eq. (23) and using saddle-
point approximation, we get:

1/7¢ = (7r/2)1/4 (24%79/3N) 3/4 exp (§1/§3/2ﬂ'> .
(25)

The influence of the external magnetic field on the or-
bital motion can be accounted for by the replacement:

afo — a&y (H) = afop

1 2

(26)

(here a4/&3 /2w is the size in space of the empty area at
the saddle point). As a result,

a

175 (H) = (1/7s) exp &0 (=) @ /Zﬂ)a/z] |
(27)

For GaAs, the exponent in Eq. (27) can be estimated as
0.15 (B/1T)? (1K/T)*/* (10" em 2 /ng)*/*.

On Figure, the dependence of the spin relaxation
time on the external magnetic field is shown for the com-
bination of the two mechanisms described by Egs. (15)
and (21) and the same parameters that were used for nu-
merical estimates. The maximum is found at B ~ 2T.
This dependence is in qualitative agreement with the
experimental data obtained in Ref. [9] for small and in-
termediate magnetic fields.
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The spin relaxation time according to mechanisms de-
scribed by Egs. (15) and (21)

To conclude, the theory of spin relaxation in the im-
purity band of a 2D semiconductor in the external mag-
netic field is presented. It is shown that spin preces-
sion in the external magnetic field enhances spin-orbit-
induced and suppresses hyperfine-interaction-induced
spin relaxation. For spin orbit coupling, the relaxation
rate is linear in B over a wide range of parameters. For
hyperfine interaction, the spin relaxation rate is inversely
proportional to the external magnetic field.
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