Normal-state electrical resistivity and superconducting magnetic penetration depth in $Eu_{0.5}K_{0.5}Fe_2As_2$ polycrystals

V. A. Gasparov⁺¹), H. S. Jeevan*, P. Gegenwart*

⁺Institute of Solid State Physics RAS, 142432 Chernogolovka, Russia

*I. Physik. Institut, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany

Submitted 12 February 2009

We report measurements of the temperature dependence of the electrical resistivity, $\rho(T)$, and magnetic penetration depth, $\lambda(T)$, for polycrystalline samples of Eu_{0.5}K_{0.5}Fe₂As₂ with $T_c = 31$ K. $\rho(T)$ follows a linear temperature dependence above T_c and bends over to a weaker temperature dependence around 150 K. The magnetic penetration depth, determined by radio frequency technique displays an unusual minimum around 4 K which is associated with short-range ordering of localized Eu³⁺ moments.

PACS: 74.25.-q, 74.70.Dd, 75.30.Hx

The recent discovery of superconductivity in LaOFeP at $T_c \approx 4$ K by Kamihara et al. [1] has lead to intensive studies on electron and hole doped iron arsenide oxide superconductors RFeAsFO (R=La, Sm) with T_c as high as 55 K in SmFeAsO_xF_{1-x} [2]. Very recently, Rotter et al. [3] found that the oxygen free iron arsenide BaFe₂As₂ in which Ba is partially substituted by potassium ions, is a superconductor below $T_c = 38 \text{ K}$, which was confirmed for $(KSr)Fe_2As_2$ compounds with $T_c = 37 \text{ K}$ [4]. The FeAs layers common to both series of compounds seem to be responsible for superconductivity. Jeevan et al. recently observed that EuFe₂As₂ shows a spin-density wave (SDW) type transition at 190 K, and becomes superconductive below 32 K after partial substitution of Eu by 50% K [5]. Below about 10 K, short-range magnetic order of the Eu moments was suggested by a feature in the magnetic susceptibility. Here we focus at first on the temperature dependence of the normal-state resistivity and then on the superconducting magnetic penetration depth in order to probe the influence of local Eu²⁺ moments on superconductivity.

Polycrystalline samples of $\mathrm{Eu_{0.5}K_{0.5}Fe_2As_2}$ were synthesized from stoichiometric amounts of the starting elements Eu (99.99%), K (99.9%), Fe (99.9%), and As (99.999%) by solid-state reaction method under Argon atmosphere, as described in [5]. The sample crystallizes in the tetragonal structure with lattice parameters $a=3.8671\,\mathrm{\mathring{A}}$ and $c=13.091\,\mathrm{\mathring{A}}$ [5]. X-ray analysis reveals that the composition of the samples is close to the expected 0.5:0.5:2:2 stoichiometry. Samples had form of rectangular bars of about $1.7\times1.7\times1.1~\mathrm{mm}^3$.

A standard four-probe ac (9 Hz) technique was used for resistance measurements. A well-defined cubic geometry of the samples provided for the precise $\rho(T)$ and superconducting properties measurements through van der Pauw four probe method. The temperature was measured with platinum (PT-103) and carbon glass (CGR-1-500) sensors. The measurements were performed in a liquid Helium variable temperature cryostat in the temperature range between 1.3 and 300 K. Magnetic measurements of $\rho(T)$ and $\lambda(T,H)$ were carried out using a superconducting coil in applied fields of up to 3 T and at temperatures down to 1.3 K.

We used a radio frequency LC technique [6] to measure $\lambda(T)$ of Eu_{0.5}K_{0.5}Fe₂As₂ samples. This technique employs a simple rectangular solenoid coil into which the sample is placed. Changes in the magnetic penetration depth of the sample lead to the change of the coil's inductance L that in turn results in the change of the resonance frequency ω (2–20 MHz) of the LC circuit. The connection between parameters of the circuit and $\lambda(T)$ is described by following simple equation:

$$\lambda(T) - \lambda(0) = \delta \times \frac{\omega^{-2}(T) - \omega^{-2}(0)}{\omega^{-2}(T_n) - \omega^{-2}(0)}.$$
 (1)

Here $\delta = 0.5\sqrt{c^2\rho/2\pi\omega}$ is the imaginary part of a skin depth above T_c , which was determined from the $\rho(T)$ measurements [6], $\omega(T)$ is the resonance frequency of the circuit at arbitrary T, $\omega(T_n)$ and $\omega(0)$ are the same one's above T_c and at zero temperature, respectively.

Fig.1 shows the normal-state resistivity $\rho(T)$ of $\mathrm{Eu}_x\mathrm{K}_{1-x}\mathrm{Fe}_2\mathrm{As}_2$ sample at a doping x=0.5. $\mathrm{Eu}_{0.5}\mathrm{K}_{0.5}\mathrm{Fe}_2\mathrm{As}_2$ is a bad metal with a specific resistivity around 300 $\mu\Omega\mathrm{cm}$ at room temperature. To emphasize the variation of $\rho(T)$ in a superconducting

¹⁾ e-mail:vgasparo@issp.ac.ru

Fig.1. (Color online.) Temperature variation of the resistivity of Eu_{0.5}K_{0.5}Fe₂As₂ sample. The inset shows the superconducting transition on an enlarged scale. Dashed line is a fit with BG Eq. (2) below 150 K and solid line is extrapolation from $\rho(T)$ above 150 K

state, we plot these data below 50 K in the inset. $\rho(T)$ decreases smoothly with temperature, while drops abruptly to zero with a midpoint at $T_c=31$ K, which clearly indicates superconductivity. Above T_c , $\rho(T)$ exhibits a linear temperature dependence up to 120 K and develops a remarkably pronounced downturn from its linear-T behavior at higher temperatures. We first try to analyze the $\rho(T)$ dependence in terms of the Bloch-Grüneisen (BG) equation for the electron-phonon (e-p) scattering:

$$\rho(T) - \rho(0) = 4\rho_1 t^5 \int_0^{1/t} \frac{x^5 e^x dx}{(e^x - 1)^2}.$$
 (2)

Here, $\rho(0)$ is the residual resistivity, $\rho_1=d\rho(T)/dt$ is the slope of $\rho(T)$ at high $T>T_R$, $t=T/T_R$ and T_R is the resistive Debye temperature. It is clear from Fig.1 that the BG model describes the $\rho(T)$ dependence below 120 K with rather low $T_R=180$ K, suggesting an importance of the e-p interaction. However, we could not fit $\rho(T)$ in the entire temperature range with Eq.(2) because the resistance bending over 120 K.

Such an unusual $\rho(T)$ dependence in Fe₂As₂ compounds is far from being clear and disputed in the scientific community. The abrupt changes in the $\rho(T)$ dependence at 150 K may be considered as a signature of a phase transition, where the crystal structure changes from tetragonal to orthorhombic, as was observed by Rotter et al. [5] at 140 K for different compositions of Ba_{1-x}K_xFe₂As₂. The reduction of the lattice symmetry was visible by (110)-reflections XRD peak splitting up to x = 0.2, however is absent for superconducting samples at x = 0.3. Thus, the tetragonal to orthorhombic phase

transition, as well as the magnetic (spin-density-wave) transition are completely suppressed in superconducting Ba_{0.6}K_{0.4}Fe₂As₂ [5]. At the same time the resistivity bending over at 120 K is still present [7].

Very recently, Gooch et al. [8] fitted the low-temperature part of $\rho(T)$ at T< 100 K of $Ba_{1-x}K_xFe_2As_2$ to a power-law dependence, $\rho(T) - \rho(0) = AT^n$, and found evidence for quantum critical behavior: The exponent n sharply decreases with x from n = 2 to n = 1 near a critical concentration $x_c = 0.4$, and then increases again to a value close to 2 at x = 1 [8]. Furthermore, the thermoelectric power divided by temperature displays a logarithmic dependence $S(T)/T \propto \log T$ near critical doping. Both results would be compatible with a quantum critical point at x_c which is hidden by superconductivity, similar as found in various heavy-fermion systems [9]. Whereas in the heavy-fermion case the characteristic magnetic energy scale is of the order of 10 K and quantum criticality is typically cut-off above this temperature, in Fe₂As₂ systems, the SDW transition takes place at about 200 K and thus, quantum criticality is expected to extend up to much higher temperatures. In this scenario, the observed crossover in $\rho(T)$ of Eu_{0.5}K_{0.5}Fe₂As₂ at 150 K would then mark the upper limit of the universal quantum critical regime in the system. Certainly, the existence of quantum critical fluctuations in Fe₂As₂ systems needs to be investigated by inelastic neutron diffraction or other magnetic probes. We also note, that the $\rho(T)$ dependence in Ba(Fe_{0.93}Co_{0.07})₂As₂ single crystals in the normal state remains almost linear up to room temperature [10].

We now turn to the magnetic penetration depth in the superconducting state of $\text{Eu}_{0.5}\text{K}_{0.5}\text{Fe}_2\text{As}_2$. Given that the $\lambda(T)$ dependence has a BCS form close to T_c :

$$\lambda(T) = \frac{\lambda(0)}{\sqrt{2 \cdot (1 - \frac{T}{T_c})}},\tag{3}$$

we plot $(\omega^{-2}(T) - \omega^{-2}(0))/(\omega^{-2}(T_n) - \omega^{-2}(0))$ data versus BCS reduced temperature: $1/\sqrt{2(1-T/T_c)}$ in the region close to T_c . We use the slope of $\lambda(0)/\delta$ vs $1/\sqrt{2(1-T/T_c)}$ and Eq.(3) to obtain an unusually large value of $\lambda(0) = 4.02 \cdot 10^{-4}$ cm from $\delta = 1.088 \cdot 10^{-2}$ cm.

For a BCS-type superconductor with the conventional s-wave pairing form, the $\lambda(T)$ has an exponentially vanishing temperature dependence below $T_c/2$ (where $\Delta(T)$ is almost constant) [6]:

$$\lambda(T) = \lambda(0) \cdot \sqrt{\frac{1}{\tanh(\Delta(0)/2k_BT)}}$$
 (4)

for dirty limit: $l < \xi$ [6]. Here $\Delta(0)$ is the energy gap.

In Fig.2 we compare the temperature dependencies of $\omega(T)$ behavior at rather small magnetic fields. As we can

Fig.2. (Color online.) Temperature variations of resonance frequency of LC circuit $\omega(T)$ for Eu_{0.5}K_{0.5}Fe₂As₂ sample. The inset shows the temperature dependence of $\omega(T)-\omega(0)$ in extended scale. The dashed curve is for empty coil

see from the inset, the low T part of this dependence has unconventional minimum around 4.2 K, which become a break like in small magnetic field 15 mT, and completely disappear at larger field 0.4 T. Also, the magnetic field dependence of $\omega(T)$ is quite strong. On the other hand, the $\omega(T)$ curves clearly display a smooth variation below 3 K which simplifies the extrapolation of the resonance frequency $\omega(T)$ of our LC circuit down to zero temperature in order to calculate $\lambda(T)$ from Eq.(1). At the same time the existence of this minima makes impossible the exploration of the exponentially vanishing BCS temperature dependence according to Eq. (4) below $T_c/2$ for the determination of $\Delta(0)$.

We plot in Fig.3 the deviation $\lambda(H) - \lambda(0)$ as a function of the magnetic field at very small H. In contrast to measurements of the magnetic induction on PrFeAsO_{1-v} [11], the $\lambda(H) - \lambda(0)$ dependence displays a sharp signature in the magnetic field dependence with clear tendency towards saturation at 15 mT independently from temperature, while we expect a linear dependence with a break point at low fields caused by the Meissner effect [6]. The observed smooth minimum in $\lambda(H)$ at 4.2 K has the same origin as $\omega(T)$ shown in Fig.2. This result indicates that there is no edge point in $\lambda(H)$ close to the true field of flux penetration in striking contrast with magnetization data in $PrFeAsO_{1-y}$ used to deduce H_{c1} [11]. Thus we could not determine the value of H_{c1} in contrast to e.g. the case of ZrB_{12} [6], apparently due to possibly melting of the vortex solid and the presence of strong vortex pinning [12].

Fig.3. (Color online.) Typical magnetic field variation of $\lambda(H) - \lambda(0)$ of a Eu_{0.5}K_{0.5}Fe₂As₂ sample at different temperatures: 4.2; 5.2; 7.7; 11.7 and 19.3 K. The solid lines are the guides for the eye

In the absence of vortices we probe the London penetration depth λ . Important problems for $\lambda(T)$ measurements are: (i) the determination of the basic superconducting parameter $\lambda(0)$ and (ii) its temperature dependence, to see whether s-wave or d-wave pairing form exist. Both these problems can be addressed from the low-T $\lambda(T)$ dependence. However, one can easily notice from Fig.4 an unconventional behavior of the superfluid

Fig.4. (Color online.) Superfluid density, $[\lambda(0)/\lambda(T)]^2$, of the Eu_{0.5}K_{0.5}Fe₂As₂ sample in different magnetic fields for the $\lambda(0) = 4.02 \cdot 10^3$ nm. The predicted behavior of $[\lambda(0)/\lambda(T)]^2$ within the BCS model is shown by dotted line

density $[\lambda(0)/\lambda(T)]^2$ of Eu_{0.5}K_{0.5}Fe₂As₂ at low temperatures. In contrast to BCS-type behavior, we observe a small but well defined anomaly with a pronounced mini-

mum at 4 K. Small magnetic fields wash out this feature and strongly influence the superfluid density.

Apparently, the strong magnetic field dependence of $\lambda(T)$ is due to magnetic flux lines partially penetrating the sample in the vortex state of the superconductor. Very strong flux pinning was also observed by Eskildsen et al. [12] in Ba(Fe_{0.93}Co_{0.07})₂As₂ single crystals with a disordered vortex arrangement. In our system the magnetic field will also affect the Eu ions. The observed anomaly in $\lambda(T)$ is very likely related to short-range ordering of the Eu²⁺ moments coexisting with the superconducting state below 10 K, as seen in the magnetic susceptibility [5] and ¹⁵¹Eu Mössbauer spectroscopy [13].

The magnetic susceptibility anomaly at low T was absent in (KSr)Fe₂As₂ compounds [3, 4] as well as in the $\lambda(T)$ dependence for Ba(Fe_{0.93}Co_{0.07})₂As₂ single crystals [14]. While the specific heat vs T signature associated with the superconducting transition provides clear evidence of the bulk nature of superconductivity in $Eu_{0.5}K_{0.5}Fe_2As_2$ [5], the rather large $\lambda(0)$ indicates an unusually large penetration of the electromagnetic field in this compound with composition close to the quantum critical point. We would like to stress that $\lambda(0)$ was determined from the temperature dependence of $\lambda(T)$ close to T_c by assuming a BCS-like form, but not from low T data, which are masked by magnetism of Eu ions. The influence of the short-range Eu-ordering on the lower-critical field and on the pinning behavior in $Eu_{1-x}K_xFe_2As_2$ should be studied in more detail.

In summary, we have performed a systematic study of the temperature and magnetic field dependence of the resistivity, $\rho(T)$, and the magnetic penetration depth, $\lambda(T)$, on polycrystalline samples of Eu_{0.5}K_{0.5}Fe₂As₂. The $\rho(T)$ dependence may be described by the Bloch-Grüneisen formula only in a limited temperature regime below 120 K and bends over at higher temperatures. Alternatively, the observed $\Delta \rho \propto T$ dependence, may be interpreted in terms of quantum critical behavior which is cut-off above 120 K. The superfluid density does not exhibit a BCS-type dependence and has an

unconventional minimum close to 4 K, very likely due to a short-range ordering of Eu ions. Small magnetic fields destroys this signature. Altogether, our results indicate unusual normal and superconducting properties in Eu_{0.5} K_{0.5}Fe₂As₂.

We would like to thank V.F. Gantmakher and R. Huguenin for very useful discussions. We acknowledge financial support by the RAS Program: New Materials and Structures (Grant #4.13), the DFG Research Unit 960 and BRNS (Grant #2007/37/28).

- Y. Kamihara, H. Hiramatsu, M. Hirano et al., J. Am. Chem. Soc. 128, 10 012 (2006).
- Z.-A. Ren, W. Lu, J. Yang et al., Chin. Phys. Lett. 25, 2215 (2008).
- M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).
- K. Sasmal, B. Lv, B. Lorenz et al., Phys. Rev. Lett. 101, 107007 (2008).
- H. S. Jeevan, Z. Hossain, D. Kasinathan et al., Phys. Rev. B 78, 092406 (2008).
- V. A. Gasparov, N. S. Sidorov, and I. I. Zver'kova, Phys. Rev. B 73, 94510 (2006).
- M. Rotter, M. Pangerl, M. Tegel, and D. Johrendt, arXiv:0807.4096 (2008).
- M. Gooch, B. Lv, B. Lorenz et al., arXiv: 0812.1927v1 (2008).
- H.v. Löhneysen, A. Rosch, M. Vojta, and P. Wolfle, Rev. Mod. Phys. 79, 1015 (2007).
- R. Prozorov, N. Ni, M. A. Tanatar et al., Phys. Rev. B 78, 224506 (2008).
- R. Okazaki, M. Konczykowski, C.J. van der Beek et al., arXiv: 0811.3669v1 (2008).
- M. R. Eskildsen, L. Ya. Vinnikov, T. D. Blasius et al., arXiv:0812.4281v1 (2008).
- 13. Anupam, P. L. Paulose, H. S. Jeevan et al., arXiv:0812.1131v1 (2008).
- 14. R.T. Gordon, N. Ni, C. Martin et al., arXiv: 0810.2295v1 (2008).