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The coloured noise induced escape rate from the lower energy stable state of a driven nonlinear microcav-
ity oscillator has been investigated by means of quasi-classical kinetic equations. We show that for coloured,
i.e. narrow-band, relatively intense noise, the escape time is controlled by the interplay of two mechanisms:
the noise induced drift and adiabatic regular shift of the oscillator state towards unstable saddle point. The
crossover between these mechanisms takes place in a particular range of the driving field intensity values, de-
pending on the ratio between the oscillator damping and the coloured noise spectrum width. The dependence
of the transition rate on the noise correlation time is analyzed for wide range of correlation time values.

PACS: 02.50.Fz, 42.65.—k, 71.36.+c

1. Introduction. The nonlinear dynamics of
exciton-polaritons in semiconductor microcavities have
been a topic of intensive research in recent years. This
type of polaritons is formed due to strong coupling of a
microcavity electromagnetic resonance with the exciton
resonance of embedded quantum wells [1].

If the external CW-pump frequency exceeds the
lower polariton branch on more than its linewidth, the
polariton field amplitude can show bistable [2-4] or
multistable behaviour [5]. This is illustrated in Fig.1 by
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Fig.1. Schematical representation of the bistable region of
nonlinear oscillator with two stable points I and 2 and
one unstable point S. The dotted lines show the bistabil-
ity jumps in forward and backward direction. The dashed
line shows the point of the calculation

the so called S-shape curve. The low(high) energy stable
point labelled with “1”(“2”) are separated by a unstable
point “S” in between them. Due to inevitable fluctua-
tions of the reservoir, the system can pass the bistability
jump not at the turning point of S-shaped curve (dotted

lines) but at intermediate intensities of the pump field
(dashed line). After such transition the electromagnetic
field inside the resonator grows strongly and significantly
modifies all nonlinear effects e.g. polariton parametric
scattering.

The physical origin of the fluctuations in a driven
polariton system is either “internal” interaction with the
polariton and phonon reservoir or the fluctuations of the
“external” driving laser field. Being of different origins
these fluctuations can show strongly different correlation
properties. The correlation time of the “internal” fluc-
tuations can be estimated by the inverse spectral width
of polariton distribution, and their intensity depends
on the occupation of polaritons reservoir. Both inten-
sity and correlation time of these fluctuations depend
on cavity temperature, excitation conditions and can be
affected by the additional non-resonant pumping.

On the other hand the statistics of the “external”
driving laser field is known to depend upon particular
design of a laser and can vary strongly from one exper-
imental setup to another.

For white noise the escape time (i.e. inverse transi-
tion rate) is determined by a large number of random
force independent fluctuations, which result in pushing
the system towards unstable point. The behavior of the
system in this case can be treated as Markovian random
process and can be obtained by solving the kinetic equa-
tion for the system probability distribution function of
Fokker—Planck type.

Fluctuation induced transitions between different
stable states of driven oscillator system have been ad-
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dressed by different approaches [6—11]. One of the pos-
sible methods to analyze this problem is based on solv-
ing master equation for density operator [6]. However
this approach allows to obtain reasonable results only
for zero temperatures. Moreover, as the detailed bal-
ance conditions are not valid for driven polariton sys-
tems, it is impossible to find exact stationary state so-
lution of master equation. For zero temperatures a sta-
tionary state solution has been approximately obtained
by calculating numerically eigenfunctions of the master
equation [6]. The linearized master equation has been
also used to obtain approximate stable state probabil-
ities [7]. The above mentioned methods can be used
only for white noise case. Another approach is based
on 2D complex Fokker—Planck (FP) equation for den-
sity probability function in coherent state representa-
tion [7]. But it is not possible to find exact solution
of 2D FP equation for the case of bistable nonlinear
driven oscillator — polariton systems. Our approach
based on Keldysh diagram technique [12] allows ana-
lyzing the influence of finite noise correlation time on
transition rates of bistable system and revealing different
mechanisms governing the transition rates. In the frame
of our approach we can reduce the kinetic equation to
1D FP equation in quasienergy space in quasiclassical
limit.

In our previous papers [13, 14] we have shown that
in the presence of a white noise the bistability transi-
tion of polariton nonlinear oscillator becomes allowed in
the vicinity of the critical pump intensities. The escape
time from the lower to high polariton amplitude state
was shown to be an exponential function of the ratio
between the driving intensity deviation from its criti-
cal value and the noise intensity within the oscillator
linewidth. For given amplitude of the noise its spectral
intensity is proportional to the noise correlation time ¢..
As a result in white nose limit, i.e. for the noise corre-
lation times less then Ai/A (A being the pump detuning
from the polariton resonance), the oscillator escape time
decreases exponentially with the increase of ¢..

In the other limiting case when noise correlation time
is much larger than the polariton damping time one can
use the adiabatic approximation. It is based on the as-
sumption that the system completely adapt to the slow
variations of the random force and jumps to the upper
bistable state as soon as the random force amplitude
exceeds its critical value. The probability of this “crit-
ical fluctuation® determines the transition rate. Thus,
within adiabatic approximation averaging over random
force distribution is not necessary for description of the
system behavior and for the estimation of the transition
rate. The latter can be found from the total probability
Mucema B MIAT® Tom 89
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of appearance of any noise fluctuation above the “criti-
cal“ one.

What happens, if the narrow band colored noise cor-
relation time becomes comparable with the polariton
damping time? In this case the system cannot follow the
external noise changes and kinetic description similar to
that for white noise limit is necessary. The escape time
as in case of white noise is determined by a large number
of random force independent fluctuations, which result
in pushing the system towards unstable point. How the
kinetic equation has to be modified in order to obtain the
reasonable values of the fluctuation induced transition
rates from different stable states? Our paper partially
clarifies these questions.

We consider the influence of coloured noise (random
force with finite correlation time t.) on the fluctuation
induced transitions between different stable states of the
driven nonlinear polariton oscillator.

2. Model. The behavior of the nonlinear oscilla-
tor in quasiclassical limit can be successfully analyzed
in quasienergy state representation [156—17]. The effec-
tive hamiltonian in rotating wave approximation for slow
varying amplitude can be written as

H=—-Ad'a+ %(a’fa)2 — f(a' +a), (1)

where a is the operator of polariton amplitude, A =
= h{w;—wrp) is the energy detuning between the driving
laser field quanta fiw; and the polariton resonance en-
ergy hwpp, a is a polariton nonlinearity constant and
f is the effective driving field amplitude. Operators a,
a' correspond to the classical canonical slow variables
a, a* and the eigenvalues of H correspond to the qua-
sienergy E in the classical approach. The hamiltonian
(1) results in the following equation of motion for slow
varying amplitude:

d
ihY = —Aa+ aalal® — f. (2)
dt
Transformation to dimensionless variables a A/f —
— a, introducing damping 9 and fluctuations £(7) yields
da 9 A
da . 1 _,B
i iYa — a + Bala| +E@1), T th’ (3)
and the corresponding dimensionless hamiltonian takes
the form

H=—ala+ g(a"a)2 —(a+ab), = aA—f:. 4)

This dimensionless form of the effective hamiltonian de-
pends on a single parameter § which defines the shape
of phase trajectories and the probabilities to find the
oscillator in different stable quasienergy states.
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In the absence of the fluctuations and damping the
quasienergy is conserved. In classical limit behavior of
nonlinear driven oscillator can be treated as precession
around the stable state with the characteristic period
T(E) [18, 19].

The interaction of the nonlinear oscillator with
coloured noise is described by an operator

V(r) = f(n)a' + fi(r)a, (5)

with a symmetrized correlation function of f(7) given
by

(FH(DFE) + Fr) () = Qrot exp(— |7 — 7'|/7o).

(6)

Therein 7. denotes the coloured noise dimensionless cor-
relation time.

The dimensional values of noise spectral density
(0?), pump amplitude (f), pump detuning (A), oscil-
lator dephasing () and nonlinearity constant (a) and
escape time ¢; can be obtained by the relations
af? 5y a2 A h
A3’ = Ka FE, tl:TlZ' (7)

In the following, we will use the notation 7 and T’
for dimensionless variables and t and + for dimensional

8= Q=

values.

3. Adiabatic noise. As we have mentioned above
in the limit 7, > T(E), i.e. very slow variation of the
noise compared to oscillator precession around the sta-
ble state, the noise induced transitions between these
stable states of the nonlinear driven oscillator is de-
scribed by adiabatic approximation. Within this approx-
imation the adiabatic modification of quasienergy states
with changes of parameter 8 = af?/A? takes place. If
B = B, the stable state “1” with quasienergy E;(8.) and
the unstable state “S” with quasienergy Es(8.) coincide
and the system transfers to the state “2” — the only one
stable state for 3 exceeding its critical value ..

For Gaussian noise, the probability of the fluctuation
with amplitude 0 f is

(9f)°

P(6/) o exp [‘W] . GhH=0. (8

Taking into account that for fixed detuning and nonlin-
earity

R _ (=1 _WB=VB?
I
the probability of the critical fluctuation of § from its
initial to the critical value 3, is
2 (VB-+VB)?
((65)%) B '

P((0f)c) x exp |-

(10)

This means that transition time ¢¢¢ in the adiabatic limit
reads as follows

2
tlfd (0.8 tc exp [@fwAad:I , (11)

where Aq4(8) = (VB — VB:)* /8-

We want to stress once again that this linear depen-
dence of the transition time on noise correlation time 7,
is based on the assumption that the system completely
adapt the slow variations of the random force. With de-
creasing 7. the system less and less adapts the changes
of the driving field and it can show qualitatively different
dependence of transition time on noise correlation time.
The crossover between these dependencies is discussed
in the next sections of the paper.

4. Finite noise correlation time. For finite corre-
lation time of the noise one should deal with the kinetic
equation for the nonlinear oscillator probability distrib-
ution function.

For coloured noise described as a set of harmonic
modes linearly connected with the driven oscillator
[18, 13] by the coupling constant ), the correlation func-
tion Eq.(6) corresponds to the changes of the noise oscil-
lator density of states v — vI'2 /w? + I'2, where v is the
constant density of states for the case of white noise and
I'. = 1/7, is the spectral width of the coloured noise.

Using the Keldysh diagram technique [12] we ob-
tain the kinetic equation for the probability distribution
function of the oscillator in quasi-energy representation.
The interaction with the thermal bath is supposed to
be weak enough, i.e. within the quasi-classical limit
Ey — Ey_1 = w(Eg) > 9, where Ej, are the quasienergy
levels characterized by large integer quantum numbers
k, and ¥ is the width of the quasienergy levels.

The contribution of the the coloured noise to the
kinetic equation depends on the functions Dy (w),

Dy, (w), which are determined as

<, A2 1

=<

The functions Dk§k, (w) correspond to the case of white
noise (7, = 0) with a coupling constant A and have been
derived in our previous paper [13]:

Dk<,k' (w) = Ay {|ak,k’|2(Nwrw +1) + |ak’,k|2Nw1+w}a

Dy o (w) = Xv {|an k| Nuy—w + |an &

2(Nw1+w + 1)} .
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The quantity N, is the filling number of noise modes
with frequency w. After integrating over w the total ki-
netic equation can be written as

Ong, =< —=>
—87' = Z (Dk’kl + Dlj,k') Ngr — (Dk,kl + Dk>,kl) Nk,
k’
(13)
with
5
22 T (T +9)

= D5, (Ex — Ew)

X2 (Ey — Ep)? + (T +9)2

The source of the coloured and white noise in a polariton
system can be different resulting in essentially different
effective temperatures. If one neglect the changes of qua-
sienergy states white noise case (I' = o0o) the equation
is similar to the master equation for density operator
obtained in [6]. Assuming that the intensity of coloured
noise strongly exceeds the intensity of white noise, the
kinetic equation can be transformed to a Fokker-Planck
equation in the quasi-classical limit for each region of
phase space

on;(E) 0 on;(E)
) (K o) + @D
(15)
where
n RSN LY
Q=10N, +1)9, 9="C, 9="C (16)

The coefficient n = A?/f? arises from the transition to
dimensionless variables (a, a*).

The kinetic equation (13) describes the relaxation
of the nonlinear driven microcavity oscillator at times
much greater then I', ' and 9!, and the value of the es-
cape time from the lower energy stable state of the non-
linear driven microcavity oscillator ¢; can be determined
by means of the equation (15) if 71 (Q) > ', },I' 1. This
condition leads to the restriction that the dimensionless
noise intensity should not be too strong.

The expressions for effective drift K(E) and diffu-
sion D(E) coefficients of nonlinear driven oscillator in
the presence of white noise were derived in our previous
paper Ref.[13]:

1 * *
1 8H  8H .
D(B) = 5 fC(E) (%da " 5ar @ ) :
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The functions K and D in Eq.(15) differ from the
case of interaction with white noise and depend on the
correlation time 7.. To determine K and D one has to
derive the quasi-classical limit of the following expres-
sions:

I (T +9)
(Ex)g® + (T +9)%’

T.(T. +9)
w?(Eg)g* + (T +9)2

K = w(Ey) Z |ak,k+q|2qw2 (18)
q

D =W’ (E) ) lakkrql’d
q

. (19)

We can distinguish two limiting cases: narrow band
colored noise (I': € w(Ef)) and nearly white noise
(Te > w(Eg)), where w(FEy) is the classical frequency
of the oscillator precession along the phase trajectory
with quasienergy Ey.

5. Colored noise. For the first case with I', <
& w(Ey) that should be compared with adiabatic ap-
proximation the formula for K can be transformed to

K/w(Ey) = (20)

_ r(l. +9)
Rl e

T(Ey) '
/ a(r)e""(E")quT
0

Let us define the function F(7) by the following mathe-
matical conditions:

+

2

T, +9) (2mw(E))?
_Z wz Ek g? + (Tc +9)?

} (E4)
iF = a(r) — (a), /0. F(r)dr =0, (21)

where

T(Ex)
(a) = ﬁ /0 a(7)dr.

Then, in the quasiclassical limit, Eq.(20) can be trans-
formed into

r.(T.+9)

K= 2T (Ey) (22)

T(Ex)
X/O {(a(r) = (a))F*(1) — (a*(7) — (a*)) F(7) }dr.

Using the same approximations, the function D(Ej) can
be determined in a similar way as

5o DeTetd) (B0 0
R /0 ja(r) — (a)?dr.  (23)

Finally, substituting D — D and K — K + K9/9 in
Eq. (32) of Ref.[13] we obtain the fluctuations induced
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escape time in the presence of a narrow band coloured
noise:

-~ 2
9 [Fs K+ Kd9/9
exp — dE;/

2Q Jg, D (24)

T1 X 91

For the considered system of cavity polaritons with a
considerable damping due to escape through the cavity
mirrors it is reasonable to assume that 9/9 < 1. This
means that the second term in the numerator within the
integral can be neglected.

Let us introduce the factor A., depending only on
the parameter 3

ESK

Aen(B) = To(T. +9) / Rap.  (25)

Ey

For given detuning and nonlinearity parameter 8 is
determined by the intensity of external force f2 (see
Eq.(7)).

We would like to stress that the modifications of qua-
sienergy states caused by the coloured noise are ignored
in this equation. Within this approximation we obtain
the escape time, depending on dimensionless parameters
B and the ratio Q(T'; + 9)I'./¥. Returning to dimen-
sional values we obtain

Q _ (@A Ak o? = (61) e,

s f2hy 26)

and

Qe+ (N ¥ty _pr (2n)

? 7y
where § f is the fluctuation amplitude of coloured noise.

Thus the dimensional escape time within narrow
band colored noise approximation is given by

2

v
(T BT R

6. Crossover. Let us now compare the results ob-
tained from the adiabatic approximation and the narrow
band colored noise approximation for estimations of es-
cape time. If t{® < t9¢, the colored noise approximation
should be used to determine the escape time of nonlinear
driven oscillator from the state “1”. In the opposite case
5™ > 99 the adiabatic approach describes the system es-
cape from the stable state “1”. The crossover between
these two approximations occurs when

v — 2
S Aen(B) o< Aaa(B) = (VB ~ V/B)*/B (29)

5" o« by ' exp

1.0 *
. * white noise
* .
0.8 = coloured noise
06 " * o adiabatic
a . . *
S - s
04 [ *
. *
. n
0.2 o . 5
° " *
® o ] *
0 © o0 03 § 5 Bt
10°
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= N
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2
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p

Fig.2. Top panel: 3-dependence of escape time exponen-
tial factors for three different approximations of fluctuation
induced transitions: white noise (Eq. (30)), narrow-band
colored noise (Eq. (25)) and adiabatic (Eq. (11)). Bottom
panel: schematic phase diagram for the crossover between
colored noise and adiabatic approximations

The escape time exponential factor dependence on pa-
rameter § are shown in Fig.2 for the three different ap-
proximations of fluctuation induced transitions: white
noise [13] (and Eq. (30)), narrow-band colored noise
(Eq. (25)) and adiabatic (Eq. (11)). The bottom panel
in Fig.2 depicts the boundary of the system parameters,
where the escape time obtained by narrow band colored
noise approximation exceeds the one obtained from adi-
abatic approach. Below the line the colored noise has
shorter escape times, while above the adiabatic escape
time is the shorter one. One can see that in wide range of
B this boundary is almost constant at v/(y + v.) = 0.2.
The escape times dependencies on the noise correlation
time ¢t for 8 = 0.09 are shown in Fig.3. As it can be seen
from Fig.3, for large enough noise correlation time the
oscillator escape time from the initial state to the higher
energy stable state due to narrow band colored noise
mechanism (squares) becomes larger than the expecta-
tion time of the external noise large fluctuation (circles)
that will course the adiabatic escape. This crossover is
calculated for Gaussian-like distribution of fluctuation
amplitudes. In case of more narrow than Gaussian dis-
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Fig.3. Escape time for three different noise regimes: stars —
white noise, squares — coloured noise and circles — adia-
batic regime. All data is calculated for relative noise am-
plitude 6 f/f = 0.1, oscillator linewidth v = 0.01 meV and
parameter 8 = 0.09, corresponding to I/I. = 8/8. = 0.61.
The dashed line is a guide for the eye of the crossover dis-
cussed in the text

tribution, the crossing point moves towards the larger
times.

7. Quasi-white noise. With further decrease of ¢,
below precession period T(E) we should use the quasi-
white noise approximation for description of the oscil-
lator transitions between different stable states. The
escape time in the case of white noise is given by [13]:

fz
t¥" o by lexp [

e A, o= (61

(30)

where 55 g
Aw"(IB) - B EdEa
with K and D defined by Eq.(17).

The stars in Fig.3 are plotted assuming the white
noise approximation, i.e. very small noise correlation
times compared to detuning. It can be shown that ac-
counting for finite noise correlation time does not modify
significantly these estimations. Indeed, in the limiting
case I'. > w(Ey) the functions K and D acquire small
corrections connected with the noise finite correlation
time:

w?(Ex)
2

w? (Ex)

K(Ek), 5D(Ek) (o4 D(Ek)
The correction to the exponential factor of escape time

for quasi-white noise can be obtained from the above
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formulas and Eq. (30) replacing o2 by ((6f)%)t. and
Auwn(B) by Ayn(B) + 6Awn(B)- This correction is ex-
pressed as 64,,(8) = JII{;S K/DdE and can be esti-
mated as A,,A%/72. Thus the correction to the expo-
nential factor of escape time is of the order

1 £y

Ve {(6£)2)
For quasi-white noise (v, > 7, A ) this correction is not
essential.

8. Conclusion. To conclude we would like to stress
that the switching between the stable states of driven po-
lariton systems can be caused not only by the “control”
signals but also by fluctuations in the polariton reser-
voir and pump beam. We have analyzed the fluctuation
induced transitions of nonlinear driven oscillator for dif-
ferent types of noise spectra. We have shown that for
coloured, i.e. narrow-band, relatively intense noise the
escape time is controlled by the interplay of two mech-
anisms. The adiabatic mechanisms is based on the as-
sumption that the system follows the slow variations of
the random force. It is realised if the correlation time of
random force is much greater than the inverse dumping
constant. In such situation the estimation of the escape
time can be obtained from the distribution function of
the random force. No averaging over noise distribution
function is needed.

With decreasing of noise correlation time, the system
can not follow the changes of random force and the adi-
abatic mechanism is not valid. One should deal with ki-
netic equations to determine the distribution function of
the system after averaging over noise fluctuations. The
crossover of these mechanisms takes place in particu-
lar range of the driving field intensity values, depend-
ing on the ratio between the oscillator damping and the
coloured noise spectrum width.

Keldysh diagram technique allows calculating both
limits (white noise and adiabatic approximation). For
adiabatic approximation we have to calculate the changes
of quasi-energy spectrum (i.e. the poles of the retarded
Green functions) caused by the external noise, consid-
ered as external regular force. When the noise correla-
tion time is comparable with the oscillator damping, it
is possible to use kinetic equation without vertex cor-
rections and to obtain the reasonable results if v < A.
The dependence of the escape time on the noise corre-
lation time (7..) differs strongly for two limiting cases of
small and large 7.. For narrow-band coloured noise, the
escape time grows with the increase of the noise corre-
lation time contrary to the quasi-white noise case, for
which it decreases. For a given noise intensity it is rea-
sonable to expect that the minimal value of escape times

dIn(t?") (31)

7*
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can be achieved for noise correlation times comparable
with the inverse detuning of the pump frequency from
the oscillator resonance.
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