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Charge density excitations in bilayer graphene in high magnetic field
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The charge-density excitations in bilayer graphene at the filling-factor » < 1 at small momenta are con-
sidered in the frame of the Hartree-Fock approximation. The presence of small asymmetry of graphene layers
is included. The dependence of the magnetoplasmon energy on the bilayer ground state is shown. The energy
splitting proportional to v/H for the symmetric case with half-filled zero-energy levels is found both for bilayer

and monolayer graphene.
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Recent experimental progress has allowed the fab-
rication and study of monolayer and bilayer graphene.
The electronic band structure of these objects is gapless
and has a chirality [1]. The monolayer has Dirac-type
spectrum with linear dispersion and chirality exhibiting
Berry phase . In magnetic field there is zero-energy
Landay level, fourfold degenerate due to two spins and
two valleys. The bilayer graphene is the unique object
which combines the parabolic dispersion law of quasipar-
ticles with their chirality exhibiting Berry phase 27. In
magnetic field there is a double-degenerate zero-energy
Landay level incorporating two different orbital states
with the same energy. Taking into account spin and val-
ley degeneracies, the zero-energy Landau level is eight-
fold degenerate. For the bilayer with small asymmetry
there are four weakly split two-fold levels, close to zero.
This one-electron structure was confirmed in experi-
ments on integer quantized Hall effect and Shubnikov-
de Haas oscillations [2, 3]. These properties are un-
derstood in terms of non-interacting electrons. The
electron-electron interaction is an important problem in
the study of cyclotron resonance in monolayer [4, 5], bi-
layer [6] and multilayer [7, 8] graphene. There are exper-
iments with multilayer graphene exhibiting some prop-
erties of a monolayer structure, using magnetotransmis-
sion measurements [9-11]. The charge-density excita-
tions at small momenta are considered in the frame of
the Hartree-Fock approximation for monolayer graphene
(12, 13]. In [14, 15] electromagnetic response in graphene
was considered theoretically in RPA approximation. In
[16] intra-Landau level transitions are considered.

In this work inter-Landau-level transitions from the
top filled to the next free Landau levels in the bilayer
graphene have been studied. Charge density excita-
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tions (magnetoplasmons) are considered. These types
are more useful for experimental study (it is possible
to observe their energy by inelastic light scattering or
microwave absorption). The charge-density excitations
at small momenta are considered in the frame of the
Hartree-Fock approximation. The case of filling-factor
v < 1 is considered. This filling-factor means the ab-
sence of free carriers due to doping or applied voltage.
The presence of small asymmetry is included. The en-
ergy of magnetoplasmon excitations is considered and
the dependence of the magnetoplasmon energy on the
bilayer ground state is shown. It is shown that the en-
ergy splitting proportional to v/ H for the symmetric case
with half-filled zero-energy levels takes place for bilayer
and monolayer graphene.

The bilayer is modelled as two coupled hexagonal
lattices with inequivalent sites (A1, B1) and (A2, B2)
in the first and second graphene layers, respectively,
arranged according to Bernal (A2-B1) stacking. The
asymmetry between on-site energies in the two layers A
is taken into account. The low-energy states of electrons
in (A1-B2) dimer are conveniently described by an ef-
fective two-component Hamiltonian [17] that operates in
the space of wave functions ¥ = (141,%p2) in the valley
K and of ¥ = (12, %41) in the valley K.
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where m = p, + py, { =1 in valley K, { = =1 in K,

m =y /20 v= ‘2/—31170.

Coupling parameters v1 = Y4,B,, Y0 = YA,B, =
= Y4,B,, @ is the lattice constant.
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Without magnetic field, the parameter of asymmetry
A gives rise to the gap in the spectrum ~ A. The two-
component Hamiltonian is applicable within the energy
range of |¢| < %71, for magnetic fields H < ¢v1/2ve. For
v = 0.39meV it corresponds to H < 50 T.

The Landau level spectrum is found using the Landau
gauge A = (0, Bz), " and 7 are raising and lowering
operators in the basis of functions ¢ = e*¥pn(z — k)
[18]. At small asymmetry the resulting spectrum con-
tains two states with energies close to zero

1 1
Eoc = 560, Big=5EA—€5, 0= Ahwe/n (2)

and for N > 2 energy levels

Bine = +hoo/ NN -1 - 36, N>2, (3)

which are weakly split in valleys and almost equidistant
for [N| > 1. In the presence of the magnetic field the
asymmetry splits the eightfold degenerate zero-energy
Landau level into four twofold levels, if the Zeeman split-
ting is omitted.

We believe that the small asymmetry is important
only for filling of LLs and the wave functions may be
used without asymmetry.

"I’n,k = an¢|n|k + bn¢|n\—2,k (4)
Yor = (dok,0), P = (d12,0),
Uing = %(QﬁNk,id’N—z,k)- (5)

Note that the spectrum of high-energy LLs is applicable
in such fields that A\g < <y1/2v. For higher fields the
full four-band Hamiltonian has to be used to determine
the exact LL spectrum [19, 20]. Trigonal warping is not
included, magnetic field is sufficiently high for that. Ac-
cording to [18] B > B., B, ~ 1T. Although in graphite
the electron g-factor is not small (g = 2), a very light
effective mass m = 0.054 in the bilayer determines a
small ratio between the Zeeman energy and LL splitting
€z /hw, ~ 0.05 [18].

The total Hamiltonian of the many-body system with
the Coulomb interaction is

H=Y Enator + Hum, (6)

where aj{ and a) are the one-particle creation and anni-
hilation operators; A = (n,k,£,0); n = 0,1, £N; £ and
o are valley and spin indexes; k is the parameter which
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labels degenerate states within one Landau level in Lan-
dau gauge. The Coulomb interaction conserves spin and
valley indexes.
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Magpnetic field is high: E. < w., where E. = e?/ely,
lg is the magnetic length. Corresponding operators for
excitations with momentum K are

Qhy (K) = Y afian. (11)
k

m > n.

The problem is considered in the way analogous to
that employed in [12, 13] for monolayer graphene sys-
tems. The time-dependent Hartree-Fock approximation
is used. The Hartree-Fock approach assumes that E, is
smaller than one-electron transition energy. For mono-
layer graphene the ratio Ejo/E. = 2.77 [12] and it is
not dependent on the value of the magnetic field. For
bilayer graphene E. = 10v/B, fw, = 2.2H [17] and the
ratio hw./E. = 0.22H'/? under the assumption € = 5.
For the first nonzero transition Fi5 = \/iwc, and there-
fore for H = 40 T the ratio Ey2/ E. ~ 2. We consider the
charge-density excitations: valley and spin indexes (£, o)
are not changed, X' = ((n',k + K,&,0), A = (n,k,&,0).

Enwigo = Eng — Eng + By e o (12)

The excitation energy consists of noninteracting and
Coulomb parts. Coulomb part E. is represented by
direct (“excitonic” E.), exchange (“depolarization” —
RPA), and exchange self-energy ¥,, contributions to the
excitation energy. Restriction for K ~ 0 enables to
consider excitations with different (£,0) independently
(RPA part is zero).
Qn(0) = Qf nieor Brmigo = EL" + 5w — Za.
(13)
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As for monolayer graphene, there is the problem of di-
vergency of exchange self-energy ¥,, due to summation
over all filled LLs. The spectrum of monolayer and bi-
layer graphene described by the model Hamiltonian in
unbounded both from above and below. This fact is
physically artificial. In [13] the cut-off value on energy or
number of LL vas defined. In [12] the semi-empirical way
was used to treat the problem. Parameter of electron-
electron interaction is fitted for one type of transition
to experimental data. For the bilayer graphene the area
of parabolic dispersion is less than needed cut-off value,
and to consider the four-band Hamiltonian is too com-
plicated problem. We only indicate some common rules
where the Coulomb part can be seen.

The case of filling-factor v = 0 is considered. This
filling-factor means the absence of free carriers (holes
ore electrons) without magnetic field. The Fermi level
is equal to zero. We consider the interlayer electron
transitions from the top filled (fully or partially) to the
next free (fully or partially) Landau levels with energies
nearly w,. There are following possible ground states
and corresponding transitions.

A. The bilayer with asymmetry: A # 0. For valley
with A¢ > 0 we have the top filled LL with n = —2
and transition (—2,1), and for valley with A < 0 we
have the top filled 0 and 1 LLs and transition (1, 2).
The noninteracting part is the same for both types of
transitions

weV2 + %|A—6|. (14)

Note that taking into account the electron-hole symme-
try of one-particle Hamiltonian leads to the fact that
(=2,1) and (1,2) transitions are really the same and
have the same energy ((—2,1) in electron representation
is (1,2) in hole representation). Taking into account
spin we have four transitions with equal energies. En-
ergy splitting due to asymmetry is absent, only addi-
tional shift takes place.

B. Ferromagnetic state (difference in energies of spin
components): one spin component oy of LLs 0 and 1 is
completely filled and the other o3 is completely empty
in both valleys. There are four transitions QIMM and
QY1 ¢, With the same energy.

C. Difference in energies of valley components. In
[21] it is suggested that there is an intrinsic small asym-
metry between valleys which is analogous to the ferro-
magnetic case.

Cases A-C correspond to integer filling.

D. The symmetric ground state with half-filled 0 and
1 LLs in both valleys. For each valley and spin there
are two combined Q, , , and Q¥, , ., transitions with

the same noninteracting part wcﬁ connected due to
Coulomb interaction. It would be possible if the tem-
perature is comparable to Zeeman splitting.

Is bilayer graphene in asymmetric case (A and C) we
have filling-factor ¥ = 4 for the electrons in one valley
and v = 4 for the holes in another valley. In symmetric
case we have two half-filled zero-energy levels in both
valleys, it means v = 2 for the electrons in each val-
ley and v = 2 for the holes in each valley. In all cases
we have equal amounts of electrons and holes, it corre-
sponds to v = 0.

In monolayer graphene with valley asymmetry [12]
we have filling-factor v = 2 for the electrons in one val-
ley and v = 2 for the holes in another valley. In the
valley-symmetric case we have the half-filled zero-energy
level in both valleys, it means v = 1 for the electrons in
one valley and v = 1 for the holes in each valley. In all
cases we have equal amounts of electrons and holes, it
corresponds to v = 0.

Therefore, it is necessary to consider the (1,2) elec-
tron or hole transitions from filled to the next empty
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The energy levels and transitions for symmetric and asym-
metric cases

level for A-C cases and combined electron-hole transi-
tions from half-filled to empty levels in the symmetric
case (see figure).

For v = 0 integer filling, labelled 01,

1 . .
Eﬁi’fy)z =~ / dqV (q)J22(q)Ji11(—q) =
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This value may depend on solving the divergency prob-
lem, but it is not equal to zero. There is no Kohn’s
theorem [22]. Energy splitting due to asymmetry is ab-
sent, only additional shift takes place.

In the symmetric case labelled 0H there are half-
filled 0 (9 = 1/2) and 1(v; = 1/2) LLs in both valleys.
For each valley and spin there are two combined (1,2) -
(—2,1) transitions. Using the Hartree-Fock approxima-
tion for non-integer filling-factors [23, 24] two combined
modes QF, = Q,,, + QF,, ., are found with ener-
gies

E,o=w2+E¥ £+ V. (17)

DN =

These modes may be called symmetric and antisymmet-
ric in analogy to modes in semiconductor bilayer.

1
EEH = EEéif])I + (22 — 21)01{, (18)

(32 —Z1)om # %(22 — %1)or, (19)

. 1 < 7
V= @t /qu(q)le(q)J—z,l(—Q) =

= 3o [V @l @ =3B @

V =2.5vH and for H=40T, V ~ 15meV.

This splitting for combined electron-hole transitions
from half-filled level is not specific to bilayer graphene.
For monolayer graphene with filling-factor » = 0 for
combined (0, 1)(electron) — (—1,0) (hole) transitions the
value of splitting is

Ving = —2(21”)2 /qu(q)|J01|2(q) = i\/gEc- (21)

This value is practically the same as for bilayer graphene
(Vimg =~ 2.5V/H), but for monolayer graphene it is pos-
sible to observe this splitting for lower experimentally
used magnetic fields.

Observation of this splitting would be the evidence of
Coulomb interaction in graphene. If the splitting could
not be clearly resolved, it would still perhaps be pos-
sible to detect it experimentally as the line broadening

depending on magnetic field as v H.
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