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Solutions of hydrodynamical equations are presented for the equation of state of the Van der Waals type
allowing for a first-order phase transition. As an example we consider the hadron-quark phase transition in
heavy-ion collisions. It is shown that fluctuations dissolve and grow as if the fluid is effectively very viscous.
In the vicinity of the critical point even in spinodal region seeds are growing slowly due to viscosity, surface
tension and critical slowing down. These non-equilibrium effects prevent enhancement of fluctuations in the
near-critical region, which in thermodynamical approach is frequently considered as a signal of the critical

endpoint in heavy-ion collisions.

PACS: 25.75.Nq, 64.10.+h, 64.60.Bd

There are many phenomena, where first-order phase
transitions occur between phases with different densi-
ties. Description of such phenomena should be similar
to that for the gas-liquid phase transition. Thereby it
is worthwhile to find corresponding solutions of hydro-
dynamical equations. Though some simplified analyt-
ical [1, 2] and fragmentary two-dimensional numerical
solutions [3] have been found, many problems remain
unsolved. In nuclear physics different first-order phase
transitions (e.g., to pion, kaon condensates and to the
quark state) may occur in neutron stars [2, 4] and in
heavy-ion collisions [5, 6]. At low energies gas-liquid
transition occurs [5]. It is also expected that at finite
baryon density the hadron — quark gluon plasma (QGP)
phase transition, which might manifest itself in violent
nucleus-nucleus collisions, is of the first-order [6]. The
hydrodynamical approach is efficient for description of
heavy-ion collisions in a broad energy range (e.g. see
[7, 8, 6]).

In this letter the dynamics of a first-order phase
transition is described by equations of non-ideal non-
relativistic hydrodynamics: the Navier-Stokes equation,
the continuity equation, and general equation for the
heat transport. We solve these equations numerically
in two spatial dimensions, d = 2, and analytically for
arbitrary d in the vicinity of the critical point. Then we
perform estimations for the case of the hadron — QGP
transition.
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The best known example to illustrate principal fea-
tures of a first-order phase transition is the Van der
Waals fluid. The pressure is given by Pyw[n,T] =
= nT/(1 — bn) — n%a, where T is the temperature, n
is the density of a conserving charge (e.g., the baryon
charge), parameter a governs the strength of a mean
field attraction and b controls a short-range repulsion.

We expand the quantities entering EoS and equa-
tions of hydrodynamics near a reference point (p.,7})
chosen somewhere in the vicinity of the critical point on
the plane P(p,T), where p = mn is the mass density,
m is the mass of the constituent. Assuming smallness
of the velocity u(r, 7) of the seed we linearize hydrody-
namical equations in u, density dp = p — p, and temper-
ature 6T = T — T;. Applying then operator “div” to the
Navier-Stokes equation and taking z = divu from the
continuity equation we obtain [1, 2):

%6p
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A [ap + o7 (dme+ ) 65”] :

ot
d = 2(d—1)/d, P = P — Plp,,T;] = p, 2502},
is the pressure expressed through the free energy F
for slightly inhomogeneous configurations; 7, and (; are
shear and bulk viscosities; A = 82 + ... + 92,.

Note that derived Eq. (1) differs from the phenom-
enological Landau equation for the nonconserving order
parameter 0y = —y(6F /d¢), v = const, and from equa-
tions used for the description of the dynamics of first-
order phase transitions in heavy-ion collisions [9] and
in relativistic astrophysical problems [10]. The differ-
ence with the Landau equation disappears, if one sets
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zero the square bracketed term in the r.h.s. of Eq.
(1). From the first glance, such a procedure is legit-
imate, if space-time gradients are small. However for
a seed, being prepared in a fluctuation at ¢ = 0 with
a distribution dp(t = 0,r) = dp(0,r), the condition
0dp(t,r)/0t|t=0 ~ 0 should also be fulfilled (otherwise
there appears a kinetic energy term). Two initial condi-
tions cannot be simultaneously fulfilled, if the equation
contains time derivatives of the first-order only. Thus,
there exists an initial stage of the dynamics of phase
transitions (t < tinit), which is not described by the
standard Landau equation.

For low velocities the heat transport is described by
the heat conductivity equation cy %—f = kAT, where & is
the heat conductivity and cy is the specific heat. Time
scale of the temperature relaxation is t7 = R?(tr)cy /K,
where R(t) is the size of the seed. On the other hand,
time scale of the density relaxation, following Eq. (1), is
t, x R (we show below that a seed of rather large size
grows with constant velocity). Evolution of the seed is
governed by the slowest mode. When sizes of seeds be-
gin to exceed the value R, where Rgyg is the size at
which t7 = t,, the growth is slowed down. Thus num-
ber of seeds with the size R ~ Rg,, grows with time and
there appears a metastable state called the fog.

We will consider phase transition for the system at
fixed values of T and P at the boundary. For further
convenience we choose pr = pcr, It = T¢r and expand
the Landau free energy in dp and 67

Av?(dp)?
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where p; and po are chemical potentials of initial and
final configurations (at fixed T and P at the boundary of
the system). Maximum value €™®* = v/3T.,.n., |07 |3/2.

In dimensionless variables dp = v, & = =z;/l, i =
1,---,d, T =t/to, we arrive at
%P ~_
—B—=A: (A 2¢)(1 — 92 - =
poy = e (Aev+ 20— +2-3), @)

1= (2¢/(w?)"?, to = 2(@n: + )/ (M0?ps),

T =2¢/(M?), T =4/(3v/3), B = cp? [[dn: + G-

Thus [ o« [67]7'/2 and to o [67]~1. With X\ = Am?,
v =v/m,n =n/m,( =(/m, e = e/m, the depen-
dence on the mass m can be excluded from all values
in Eq. (3). Note that in (3) Age = 0. We retained
this term for convenience since then solutions (3) yield
correct asymptotic for uniform configurations.

There exists an opinion, cf. Ref. [11], that, if at
some incident energy the trajectory passes in the vicin-
ity of the critical point, the system may linger longer in
this region due to strong thermodynamical fluctuations
resulting in the divergence of susceptibilities that may
reflect on observables. Contrary, we argue that fuc-
tuational effects in the vicinity of the critical point in
heavy-ion collisions can hardly be pronounced, since all
relevant processes are proved to be frozen for 67 — 0,
while the system passes this region during a finite time.

To describe configurations of different symmetry we
search two-phase solution of Eq. (3) in the form [1, 2],

¥ = F tanh[£ — &o(7)] +€/4, (4)

= /& + £ + & for droplets/bubbles (dsq = 3),
€ = &+ & for rods (dsoy = 2) and £ = & = z/l
for kinks (dgoy = 1) in d = 3 space. For € > 0 up-
per sign solution describes evolution of droplets (or rods
and kinks of liquid phase) in a metastable super-cooled
vapor medium. The lower sign solution circumscribes
then bubbles (or kinks and rods of gas phase) in a sta-
ble liquid medium.

The boundary layer has the length |£ — &o(7)| ~ 1.
Outside this layer corrections to homogeneous solutions
are exponentially small. Considering motion of the
boundary for &(7) > 1 we may put £ ~ &(7) in (4).
Then keeping only linear terms in € in Eq. (3), we arrive
at equation

/8 d2§0 3 dsol -1 &

PR _ 40 T 7o 050
2 dr? 2¢ &o(7) dr (5)
Substituting (4) in (2) we obtain
3/2 A3—dyo1 )5 47ds01
SFo] = 2m3/2 A vl 9
1ﬂ(dsol/z)r‘(l + (3 - dsol)/2)Pr
X I::F’Eé‘gsol /dSOI + 2&‘5501—1/3] , (6)

2A is the diameter, height of cylinder and the length of
the squared plate for dso1 = 3,2 and 1, respectively; I’
is the Euler I'-function. The first term in (6) is the vol-
ume term and the second one is the surface contribution,
0 Fyure. At fixed volume in d = 3 space, the surface con-
tribution for droplets/bubbles is smaller than for rods
and slabs. Thereby if a seed prepared in a fluctuation
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is initially nonspherical it acquires spherical form with
passage of time. Surface term is §Fgy s = oS, S is the
surface of the seed, o is the surface tension, and the gra-
dient term in (2) is then SFE = 28 = L6Fus.
Thus we are able to find relations: o = ao|67%/2,

o2 = 32mn2.T.oc; 1 = There are two di-

mensionless parameters in (3) and (5): € and 3. The
value € distinguishes metastable and stable state minima
in the Landau free energy, 8 = (32T,,) ~[dn: + ]~ 202m
controls dynamics. For 8 < 1 one deals with effectively
viscous fluid and at 8 > 1, with perfect fluid. Thus the
smaller surface tension, the effectively more viscous is
the fluidity of seeds.

Using Eq. (5) we can consider analytically several
typical solutions for evolution of seeds of stable phase in
metastable matter.

1) Short time evolution of a seed. For small 7 (initial
stage) using Tazrglor expansion in 7 and assuming zero

(1]

initial velocity, :%|,—o ~ 0, we obtain

R(t) ~ Ry + (wt*/2) [1 — 2t/ (3toB)]

2(dn:+¢:)B

AvZmne,

valid for t < (B)"?) t « ty = x
2

_ G'o . ur .
X T Initial stage of the process proceeds with

acceleration

w = (dsot — 1)Av* (Ro — Rey) /(RoRer),
which changes sign at the initial size Ry = R.,, where
Rep = (dsor = 1)0*V2eM/(3[el), Rer(€™%) o 1/6T /2,

is the critical size. Seeds with Ry < R., shrink,
while seeds with Ry > R, grow. For seeds with
|Ro — Rer| € Rer the size changes very slowly (w o
o« |6T|(Ro — Rer)/R2,). For undercritical seeds of a
small size, w o< —|d7|/Ro. Slabs of stable phase, being
placed in a metastable medium, grow independently of
what was their initial size. Note that the same value R,
follows from minimization of (6).

2) Long time evolution of a large seed. For t >> tinit,
we may drop the term 82£,/872 in the Lh.s of Eq. (5).
For R(t) > R.., surface effects become unimportant
and we arrive at the solution

R(t) = Ry + Uasympl, Uasymp = 3l€|v/B/vV2Mv".

Seeds grow with constant velocity. The time scale for the
growth of the seed with size R > Rc, is t, = R/%asymp,
t,(emax) = (2m/T.,)*/2R/((368)/?|6T|*/?). Asymptotic
regime is reached at very large values of time, provided
the system is near the critical point.
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3) Long time evolution of a small seed. Describ-
ing seeds of a small size (I € R < Ry, dsa # 1) for
t > tinis, we can drop the term o< € in (5). Then we find

R(t) = /RS — 2(dor — D12/ t0.

The time scale at which the initial segd of a small size
dissolves is, tqis = 16"“”(%:::1(:1;’;:34')120, and is o< R32.
Thus, fluctuations of sufficiently small sizes are easily
produced and dissolve rapidly.

4) Fluctuations in spinodal region. Let the sys-
tem be driven to a spinodal region where fluctuations
of even infinitesimally small amplitudes and sizes may
grow into a new phase. To demonstrate this we take the
free energy 0F to be close to its maximum (§F ~ 0).
Then we linearize Eq. (3) dropping %> term. Setting
P = —£ + Re{thoe™ "€}, 4y is an arbitrary but small
real constant, we find two solutions,

vy (k) = (—k® £ /k* + 80k2 — 4Bk*)/(26). (7

Growing modes correspond to the choice of “+”-sign
and k* < 2. The time scale at which an aerosol of
seeds develops is taer = to/Yy(km), km corresponds to
max{7yy(k)}. For an effectively large viscosity (8 < 1)
there are two solutions: the damped one, and the grow-
ing one for k < v/2. The most rapidly growing mode is
Yo (km) ~ 2, km = 284 « 1. The time scale charac-

terizing growth of this mode is 7, ~ 1to = %jﬁ%.

The typical size of seeds, R!,, ~ [/(26'/*), increases
with an increase of the viscosity. For k> > 2 both modes
are damped. In the case of an effectively small viscos-
ity (8 > 1) we get vy (k) ~ j:k\/2/—,8\/1 — k2/2, and
V3@ (ky, = 1) = B7'/2. The time scale characterizing
growing modes, #d  ~ to/yy = 2¢Y/2/(M?) « 6T 1,
does not depend on the viscosity in this limit. The size
scale of seeds is RiY ~ I. Modes with k2 > 2 oscillate
and do not grow into a stable phase.

For the description of the hadron—-QGP first-order
transition we take values T, ~ 162 MeV, ncp/nsat ~
~ 1.3, as they follow from lattice calculations, see
[12]. Parameters of the EoS are then as follows: a ~
~ 8.76 - 103(MeV - fm?®), b ~ 1.60 fm=3, X\ ~ 7.80 -
107 8¢3(fm® /MeV?), v? ~ 1.56-10%¢?|6T | (MeV? /fm®),
€72% ~ 58.4(5T)%/?(MeV /fm®), m is the effective quark
mass, ¢ = (m/300MeV). Further we obtain (T = 0) ~
~ 0.2 fm (radius of confinement) for oy ~ 40 MeV/fm?.
If one used g9 ~ 100 MeV/fmZ, one would estimate
(T =0) ~0.5 fm.

Next we use s ~ 7T3(T/T.,) at T near T, cy =~
~ 28T3*(T/T.,), as it follows from the lattice data
[12]. Assuming the minimal value of the viscosity
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Nmin = 8/4m ~ 60MeV/fm?, (pnin = 0 we evaluate
ﬂgg’;, ~ 0.015¢q for o¢ ~ 40 MeV/fm2, that corresponds
to the limit of effectively very large viscosity. Even
for gp ~ 100 MeV/fm?, m = 600 MeV we would get
BE&p ~ 0.2 < 1. Note that following [13] the bulk vis-
cosity diverges in the critical point. If were so (3 — 0),
the quark-hadron system would behave as absolutely vis-
cous fluid, like glass, in near critical region. Contrary,
Ref. [14] argues for a smooth behavior of the bulk vis-
cosity.

With 8 = 0.015 we further estimate t, ~
~ 2877t fm, t,(€°*) ~ 9.1Rq'/2|6T|~'/2, and
tais ~ 14qRo (Ro/fm). Typical time for the formation
of the aerosol is t7,, ~ |67|~! fm. Typical size of
seeds in aerosol is RJ, ~ 0.24/67|~'/2 fm. Only
tinit ~ 0.03¢|67|"! fm proves to be small (excluding
quite small §7). Critical slowing down that limits
growing of the & meson correlation length was discussed
in [15].

For the thermal conductivity we use an estimation
KkQap ~ agn/m taking o ~ 3 to recover the relation be-
tween values of k and 7 for nuclear gas-liquid phase tran-
sition at low energies [16]. The scale of the heat trans-
port time is t7 ~ 26q (R/fm)’ fm. Using that R,, ~
~ 0.1|67| ! fm, we obtain Rgog ~ 0.1¢ /2|67 ! fm <
< Rer.  The value Rgg proved to be very small
(0.1 + 1 fm). However, time scale ¢r is rather long.
Therefore, the system most probably would have no time
to fully develop a fog-like state in a hadron-quark phase
transition in heavy-ion collisions.

Thus for the system near the critical point all es-
timated time scales (except t,i;) are very large. If the
system trajectory paths rather far from the critical point
(Ter, per), all time scales, except t7, become less than
the typical life-time of the fireball (~ 10 fm at RHIC
conditions).

We solved numerically the general system of equa-
tions of nonideal hydrodynamics for d = 2. To illus-
trate the results we consider dynamics of overcritical
and undercritical seeds (disks) in infinite matter taking
initial density profile as p(z,y;t = 0) = pout + (Pin —
- pout)G(RO - T), r=4/2?+ yza pin and poyt are den-
sities in stable and metastable homogeneous phases, re-
spectively.

In Fig.1 we show the time evolution of a liquid disk
(upper panel) and a gas disk (lower panel) for T/T,, =
= 0.85. In the middle column we show dynamics of an
initially overcritical seed with Ry = 0.3L > R, ~ 0.16L
and in the right column, of undercritical seed Ry = 0.1L,
L =5 fm. The time snapshots are shown in Figure in
units L. The configuration is computed for values of ki-
netic parameters  ~ 45 MeV/fm? and 8 ~ 0.2. We
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Fig.1. Isotherm for the pressure as function of the density
with initial and final states shown by dots (left column).
Dash vertical line shows the Maxwell construction, MC.
In the upper panel the initial state corresponds to the sta-
ble liquid phase disk in the metastable super-cooled gas,
and in the lower panel, to a stable gas phase disk in the
metastable super-heated liquid. Middle column shows time
evolution of density profiles for the overcritical liquid disk
(upper panel) and gas disk (lower panel). Numbers near
curves (in L) are time snapshots. Right column, the same
for initially undercritical liquid or gas disk

see that in case Ry > R, (middle column) disks slowly
grow with the time passage. For overcritical discs the ini-
tially selected distribution acquires the tanh-like shape,
see (4), only for ¢ > (50 + 100)L. Initial disks of a
small size practically disappear for ¢ 2 10L = 50 fm.
Due to the matter supply to the disk surface and the
shape reconstruction, the density decreases in the lig-
uid disk neighborhood below the value of the density in
the homogeneous metastable matter and it increases in
the gas disk surrounding above the value of the density
in the homogeneous metastable matter (see the middle
column).

In Fig.2 we demonstrate time evolution of the wave
amplitudes, p(t) = p + Ao f(¢t)sin(kr), for an undercrit-
ical value of the wave number k (left panel) and for an
overcritical value (right panel). In case of the overcriti-
cal k and effectively small viscosity (3 = 20) we demon-
strate change of the amplitude in the 3/2-periods of the
oscillation. Such a behavior fully agrees with that fol-
lows from our analytical treatment of the problem.

Concluding, even in the spinodal region seeds are
growing slowly, if the system is somewhere in the vicinity
of the critical point. Thus in heavy-ion collisions the ex-
panding fireball may linger in the QGP state, until T'(t)
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Fig.2. Time evolution of wave amplitudes f(¢) in aerosol
for effectively small (3 = 20, solid line) and large (8 = 0.2,
dash line) viscosity. Left panel: k = 2l/L (growing
modes). Right: k& = 81/L (oscillation modes for large 3
and damping modes for small 8). Other parameters are
the same as in Fig.1

decreases below the corresponding equilibrium value of
the temperature of the phase transition. There exists a
belief that strongly coupled QGP state, represents al-
most perfect fluid [8]. We demonstrate the essential role
of viscosity and surface tension in dynamics of first-order
phase transitions, including the hadron-QGP one. Fluc-
tuations in QGP (at a finite baryon density) grow and
dissolve as if the fluid were very viscous. Although vari-
ation of parameters in broad limits does not change our
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conclusions, further investigations of the phase transi-
tion within dynamical simulations of heavy-ion collisions
with a realistic equation of state are obviously required.
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