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We develop a bosonization approach for finding magnetic susceptibility of 1D attractive two component
Fermi gas at the onset of magnetization taking into account the curvature effects. It is shown that the curvature
of free dispersion at the Fermi points couples the spin and charge modes and leads to a linear critical behavior
and finite susceptibility for a wide range of models. Possible manifestations of spin-charge coupling in cold

atomic gases are also briefly discussed.
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Elementary excitations in 1D interacting electron
systems are not conventional quasiparticles carrying
both spin and charge, but rather spin and charge waves
that propagate with different velocities [1]. This behav-
ior called spin-charge separation has been addressed in
a number of experimental studies and demonstrated, in
particular, in experiments with quantum wires in semi-
conductors [2]. There is a growing interest in reveal-
ing effects of spin-charge separation in experiments with
cold Fermi gases [3], where the 1D regime has been re-
cently achieved [4, 5].

On the other hand, the interaction between spin and
charge degrees of freedom can lead to pronounced ef-
fects. The spin-charge interaction is seen in exact so-
lutions for integrable systems, for instance in the Fermi
Hubbard model for spin-1/2 fermions [6 —9]. In this case
the spin-charge coupling can also be treated by bosoniza-
tion accounting for the curvature of the spectrum at the
Fermi points [9]. In the presence of two gapless modes,
this leads to the phenomenon of charge transfer by spin
excitations [9].

In this letter we show that the spin-charge cou-
pling drastically changes the critical behavior at the
commensurate-incommensurate (C-IC) phase transition
for spin-gapped fermions, ensuring a finite susceptibil-
ity. This transition occurs when the gap gets closed by
a critical magnetic field and the magnetization emerges
in the system. In the absence of spin-charge coupling, in
particular at half filling, one has a universal square root
dependence of magnetization on the field [10, 11] and an
infinite susceptibilty. This is a consequence of the fact
that solitons appearing in the spin sector above the crit-
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ical field h. behave themselves as free fermions. They
have a quadratic dispersion, and the soliton density is
proportional to the magnetization m. The kinetic energy
of solitons is thus proportional to m® and minimization
of their total energy E ~ [—(h — h.)m + const x m?]
in the field h > h. gives the square root dependence
m ~ v/h — h,.

Away from half filling the spin-charge interaction,
entering the problem through the curvature of the spec-
trum at the Fermi points, leads to an effective non-local
and relatively long-range interaction in the spin sector.
The effect of the interaction on the ground state energy
is reduced to the change of basic parameters of the spin
sector. This provides the appearance of ~ m? term in
the ground state energy, ensuring a linear field depen-
dence of magnetization and a finite susceptibility at the
C-IC transition. We develop an effective field theory
applicable for a wide range of models. Those include
continuum models and extended Fermi Hubbard models
with anisotropic interactions [12] and/ or mass (hop-
ping) anisotropy [13]. For the integrable Fermi Hubbard
model with only on-site interactions, this type of critical
behavior is seen from the Bethe Ansatz solution of Ref.
[7]. We give a transparent interpretation of this picture
and show how the spin-charge interaction changes the
behavior of correlation functions.

We first consider a dilute strong coupling limit for
attractively interacting two component fermions and ob-
tain the magnetization across the CIC transition. In the
strong coupling limit, spin-1 and spin-| fermions form
strongly bound pairs and at low density the interac-
tion between the pairs and uncompensated (for exam-
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ple, spin-up) particles created by the magnetic field can
be neglected. Thus in this limit the system represents
a mixture of noninteracting hard core bosons (bound
pairs) and free fermions (uncompensated spin-1 parti-
cles) and the density of the thermodynamic potential is:

= 1(De1)*+(0:01)°1+ 2 (B2 p)” + (9:6,)°] -
h 6.6 (8:1 +20:9y)
-3 \/—T Ay — TT (1)

The fields 0,¢p, O, ¢+ and 0,0,, 0,04 represent density
and current fluctuations for the pairs and uncompen-
sated fermions [1], h is the magnetic field, u is the chem-
ical potential, and the multiple N' = (8,¢1 +28,¢,)//7
describes fluctuations of the total number of fermions.
The term W cos \/E(ﬁT provides a gap for spin excita-
tions which in the absence of the field can be described as
massive fermions. Indeed, using bosonization ruls, it is
easy to see that the spin-up part of Eq.(1) can be rewrit-
ten as the Hamiltonian of noninteracting massive gapped
fermions, where the term W cos v/4m¢; emerges [1]. The
gap gets closed by a critical magnetic field h.. At a
fixed p the fields 0,¢p, 0,0, and O,¢+, 0,01 are decou-
pled and one obtains the usual square root dependence
of magnetization on the field [10, 11]: m ~ v/h — h, for
h — h. + 0. At a constant number of particles we have
a constraint (N') = 0, which provides coupling between
the fields of spin-1 fermions and pairs and modifies the
square root dependence to a linear one. At a critical
field h. = 2A, where 2A is equal to the binding energy
of the pairs, the low-momentum dispersion relation for
L 2k2 +A2-A~ v%kz/ZA,
with v; being their ve10c1ty. The bound pairs dis-
perse linearly with velocity E,(k) = wvp|k|. Taking
into account the constraint (M) = 0 we have the to-
tal energy E = Y Ei(k) + > Ep(k) — m(h — h,) =
= vp,m?/2r — (h — h;)m + O(m3). Minimazing E we
obtain linear dependance m=(h—h.)/nv, for h— h.+0
and a finite susceptibility

spin-1 fermions is E4(k) =

X = Om/0Oh|p, = 1/mv,. (2)

We now turn to the opposite case of weak coupling
and derive in the spin and charge basis an asymptoti-
cally exact theory near the critical point. Taking into
account the curvature x of the spectrum at the Fermi
points [9, 14], the low-energy Euclidean action in the
weak coupling limit to the lowest order in k can be writ-
ten as [9, 15]:

S = /dxdT{ Z S0+ L @6a)1+
+—cos(\/_¢s)— hp(f/;;-i—
ST
K Koo 6 $50-$50- P +
ﬁ 2 2 2 ..
+ —ﬁwmv [(8205)" + (8-94)* /K7 + } (3)

where 7 = ivpt is the Euclidean time, v is the Fermi ve-
locity, and the subscripts . and ; stand for the charge and
spin sectors. The field 0,¢. describe fluctuations of the
charge (mass) density, while 8, ¢, stands for fluctuations
of the spin density with @, s = (¢1£¢;)/v/2. The action
(3) is applicable for a wide range of models for spin-1/2
fermions, including continuum and extended Hubbard
models. The coupling constant g,, Luttinger parameters
K. s, and spin/charge velocities v, = u,vr depend
on the Fourier transforms of the interaction potential at
wavevectors k = 0 and k = 2kp [1]. For spin-gapped
fermions which are SU(2) symmetric at h < h., one has
gs <0, K; =1+ g5/2, and the charge sector is gapless.
In the weakly interacting regime both K, and K, are
close to unity. For simplicity, we put v. = vs = vp,
which does not affect our main results.

Compared to the standard action which is quadratic
in currents and spin-charge separated, Eq.(3) has ex-
tra (cubic) terms [14, 9, 15] accounting for the curva-
ture of the free spectrum at the Fermi points. It cou-
ples the spin and charge sectors and is proportional to
k = 02E(k)/20k?|;,. Dots in Eq.(3) stand for higher
order terms that we neglected and for cubic terms within
the charge sector which we omitted as irrelevant mod-
ifications of the linearly dispersing charge mode. The
cubic terms of Eq.(3) describe a long-range interaction
between spin solitons through the charge sector in the
second order of perturbation theory. We will show that
the effect of this interaction can be reduced to modifi-
cations of the basic parameters of the spin sector. As
a result the ground state energy shifts proportionally to
the soliton density in the square.

For finding the susceptibility at a given number of
particles we have to impose a constraint: (9;¢.) = 0,
which allows us to integrate out the charge modes. We
calculate the ground state energy at the onset of mag-
netization, confining ourselves to the terms proportional

to m2. For extracting these terms we write: 8,¢, =
=: 0;¢s : +v/2mm, with the symbol :: standing for the

normal ordering with respect to the kr corresponding
to m = 0[1]. This ammounts to separation of 9,¢, into
its mean part and fluctuations at h > h¢r. Then, after
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integrating out charge degrees of freedom, the Euclidean
action is Seps = S? + Sk, where:

1
= 5K / [(: Orps )% + (: Ouths 1) + 2Tm® +
9s K
+ — - cos (V8m: ¢s : +4wmz)| drdz, 4)

and it does not give rise to an m? contribution in the
ground state energy[10, 11]. Retaining only contribu-
tions proportional to m?, the term S, originating from
the spin-charge interaction is given by:

2,2, 2
S, = _2m I;: s
UFr
i#£j
X [ (02,4, Ge(%,): 00,04 (x) 10y, 04 (¥) : —
,j=0,1

- aziyj Ge(%,Y) :02,05(x) :0y, 05 (y):| dxdy.  (5)

Here x = {z,7} = {29, 21}, and y = {9, 7'} = {yo, 11},
and the propagator for the charge sector is G.(x,y) =
= —K./ArIln((z — y)*/a® + (1t — 7')*/a® + 1), where a
is a short distance cut-off.

The ground state energy, in which we intend to ex-
tract the m? contribution, is given by:

Ey = _% In {/Dqﬁse_Sg(l — S+ O(m4))} , (6)

where we have written e %+ = 1 — S, + O(m*). As we
see, Eq. (6) involves the calculation of the expectation
value of S, (5) in the vacuum of the sine- Gordon theory
at m — 0.

For h = h., + 0 the vacuum of effective theory con-
tains infinitesimally small density of solitons. How-
ever, after separating vacuum average from J,¢, at
h = h¢r + 0, the m? contribution in Eq. (6) can be
extracted using the vacuum at h = h., — 0 due to the
relation:

(:0: 05 :0y, s :>hcr+0 = <a$-'¢36w¢3>hc,—0 + O(m).
(7)

Eq. (7) can be established from mapping the sine-
Gordon model onto the massive Thirring model. Then
at K, = 1/2, where the spin sector is equivalent to free
massive relativistic fermions, one easily gets Eq. (7). For
K, # 1/2 one finds that Eq. (7) holds in any order of
perturbation theory in the Thirring coupling constant.
On the other hand, for h < h., the magnetic field
does not change the states of the system and only shifts
the antisoliton and soliton energies by ~ +h so that the
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energy of a soliton-antisoliton pair remains the same.
Since 0, ;¢s(x) has nonzero matrix elements only be-
tween the states which can differ from each other by a
certain number of soliton-antisoliton pairs [16], the cor-
relation function <6zi¢58yj¢s> for h = her — 0 is the
same as at h = 0. At h = 0, due to the Euclidean in-
variance we have: (8,,¢50,,¢s) = 85,0,,G4(r), where
r = y/(z —y)? + (1 — 7')? is the radial variable. The
expectation value (Sy) is given by Eq. (5), with the
products 0., ¢,(x)0y; d(y) replaced by the correspond-
ing correlation functions. Then, after integrating over
the angular variable, the non-local terms of the first line
of Eq. (5) and those of the second line cancel each other.
This is a consequence of the Eucidean (Lorentz in real
space) symmetry of correlation functions. Accordingly,
the expectation value of the integrand in Eq. (5) reduces
to:

d(x —
(;Tc_ly);<a‘”‘ s (x)ayi b5 (Y)> .

This means that the m? contribution to Ey (6) can be
obtained by using a simplified effective action:

Sesr= So — m /d:z:dT [(3z¢s)2 + (3T¢s)2] .(8)
Vg

One thus sees that the effect boils down to the renor-
malization of the Luttinger parameter of the spin sector
(increase of K,) with m?:

K, = K, (14 2m’s*n” Jvg) . 9)

Note that for spin-gapped fermions which are SU(2)
symmetric at h < h., equation (9) encodes breaking
of the SU(2) symmetry.

From the rescaling of the Luttinger parameter deter-
mined by Eq. (9) we obtain the following m? contribu-
tion to the ground state energy:

2,.2,2
_ 6E0AKSZ 2Ksm R 6E0

2
ABy(m’) = 7%, 2 0K,

(10)

For the inverse susceptibility Eq. (10) then yields:
vex ! = 4K k*1?0Ey | 0K, (11)

where & stands for the ground state energy density of
the sine-Gordon model. For K; — 1 we can follow the
RG procedure [17, 18] in order to extract the leading
contribution to the ground state energy density of the
sine-Gordon model. In the one-loop approach we have
&0 = —AA? /up, where A is the soliton mass (gap in the
excitation spectrum), and ) is a positive factor which we
will fix later for the SU(2) symmetric sine-Gordon case.
One-loop RG estimate of the soliton mass is [17-19]:



318 T. Vekua, S.I. Matveenko, G. V. Shlyapnikov

arctan\/m s
n exp{— Joi-(-3K,)? b @ |gzK,) >1 "
—-F arctanh\/m 19s| ( )
exp{— SR, b a2k, =1

Finally, from Eq. (11) in the vicinity of the SU(2) sepa-
ratrix of the sine- Gordon RG flow, on which the model
is SU(2) symmetric, we obtain:

1 AKRPA? 16AK kP2 A2 o2 A
C3(1- K,)2vd 3vd, Er

X

up to subleading contributions.

Equation (13) is valid for a wide class of generic mod-
els, including those with the spin anisotropy. Strictly
speaking, the Hamiltonian (3) requires small g; and
K, close to unity. Nevertheless, one can think of ex-
tending our results to K; away from unity, in partic-
ular to the Luther-Emery point K; — 1/2. Then,
it is straightforward to evaluate x ! by mapping the
spin sector onto free massive fermions, which gives:
X' x K?060/0K, x K2 {(8is)? /0% — (02s)?) ox
o« (kAlnA/Ep)2.

The most important result is that the susceptibility
at the commensurate-incommensurate phase transition
stays finite if the curvature is finite: k # 0. At the onset
of magnetization the susceptibility is finite also for free
fermions, where A = 0 and x ~ v;l. However, as we
see from Eq.(13), in the limit of A — 0 the susceptibility
diverges. This was previously observed for the Hubbard
model [7] and attributed to a singular character of the
zero interaction point.

In the case of integrable Fermi Hubbard model with
only on-site attractive interaction U < 0, one has
1—- K, ~ |U|/2nvr and the result of Eq. (13) is simi-
lar to the Bethe Ansatz calculation in the weak coupling
limit [7]: x 1(|U — 0) = 8x273A%/vpU?2. This implies
that the factor A is equal to 3/27 on the SU(2) line.

For strong coupling the Bethe Ansatz inverse suscep-
tibility is given by x~*(|U| = o0) = 2m%v(1 — v)?/|U]|
[7], which at a low filling factor v tends to our strong
coupling result (2), with v, = 27v/|U|.

We now analyze the behavior of pair and single
fermion correlation functions at the onset of magnetiza-
tion (h > h.r and m — 0) [20]. For the Hubbard model,
using explicitly the dressed charge matrix [21], in the
presence of two gapless modes one obtains an effective
Hamiltonian density[8, 22, 23]:

Hepr = Z

B=+

L [(8:90)*/ K + Kp(9:05)%] - (14)

The fields ¢+ and . are related to the spin and charge
fields through the spin-charge mixing parameter ¢:
¢+ = ¢c - §¢sa 0+ = aca ¢— = ¢sa 0 =0+ 696,
(15)

and v4, K4 are the Bethe Ansatz velocities and Lut-
tinger parameters for the £ sectors. For m — 0 we have
v xm — 0, K_ — 1/2 at any U and v [24]. In the
case of half filling (v = 1) one has Ky =1, £ =0 for all
|U|, and there is an exact spin-charge separation so that
the fields ¢4, 0+ coincide with ¢, 4,0 5. For v < 1 one
has

| | 81)F

, &= |U| os(ﬂ—y) exp (—%) (16)

at |[U| — 0, with the Fermi velocity vp = 2sin7v/2, and
K, =2¢=1-v, vy =2mv/|U| for |U|l - o. So,
the parameter of spin-charge mixing, &, ranges from 0
to (1 —») and monotonically increases with |U|. The ef-
fective Hamiltonian (14) is obtained through the Bethe
Ansatz calculation and for the inverse susceptibility it
naturally gives the exact result [7]: x 1 = 2mv,. €2/K .

Asymptotic behavior of correlation functions for the
Hubbard model with a repulsive on-site interaction, in
the presence of two gapless modes (and in the presence
of magnetic field), was obtained by Frahm and Kore-
pin [6]. Critical exponents for the general case have
been obtained from a numerical solution of the coupled
Bethe Ansatz integral equations for the dressed charge
matrix. The effective Hamiltonian (14) was constructed
by Penc and Sélyom in such a way that it reproduces the
Bethe Ansatz behavior of correlation functions [8]. This
procedure of obtaining an effective Hamiltonian was re-
translated to the case of attractive Hubbard model by
using the particle hole transformation [23].

The limit of m — 0 allows us to derive analytical
expressions for the critical exponents of the correlation
functions and make a number of physical conclusions.
For the pair correlation function from Eq. (14) we ob-
tain:

K,=

cos 2mmax
(1/’1(4”)1/11(15)1/’“0)1/’“0)) x m; z — 00, (17)
whereas for h < hg, it is ~ 27 1/K+. There is a universal

jump of 0.5 in the critical exponent, the result that is ex-
pected from the theory based on spin-charge separation.
However, for the single fermion Green function we find:

coskpy() X
W) @y (0)) o« — =5 2 5 00, (18)
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where kg4 (y) is the Fermi momentum of spin-up (down)
fermions given by the free value. The critical expo-
nent of the majority (spin-up) component is vy =1/2+
+K 4 /4+(1+£)?/8+(1—¢)?/AK ;. , and for the spin-down
component we obtain v| = v1+(1/K;—1/2) > vy. The
presence of an additional spin-charge mixing term ~ £
in the critical exponent of the single fermion Green func-
tion suggests that v+ < v| even in the limit of m — 0,
which is a clear signature of spin-charge coupling. Per-
sistence of spin-charge coupling down to m — 0 limit
was recently observed numerically [25]. The difference
v, — vy, at a given magnetization m, increases with |U|
for weak coupling, reaches its maximum in the regime
of intermediate coupling, and then decreases with in-
creasing |U| in the strong coupling regime. Thus, the
effect of spin-charge mixing is the most pronounced at
an intermediate coupling strength.

In conclusion, we showed that the curvature couples
spin and charge modes for m — 0 and changes critical
properties of 1D spin gapped fermions at the onset of
magnetization. Our findings emphasize the importance
of spin-charge coupling in 1D gapped systems, and ex-
periments with cold atoms can shed new light on this
problem. Two-component Fermi gas in a 1D optical lat-
tice is well suited for revealing spin-charge separation
or observing spin-charge coupling, especially in a box
potential where v is coordinate independent.

Periodic modulations of the box size can only ex-
cite in-phase oscillations of the two components (charge
oscillations), and they will not excite out-of-phase os-
cillations (spin modes) at half filling where exact spin-
charge separation holds. In contrast, for a significantly
smaller filling factor the excitation of these modes will
be provided by spin-charge coupling.
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