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Spin crossover: the quantum phase transition induced by high pressure
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The relationship is established between the Berry phase and spin crossover in condensed matter physics
induced by high pressure. It is shown that the geometric phase has topological origin and can be considered

as the order parameter for such transition.
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Spin crossover in condensed matter physics is a
transformation of a system with one spin S; at each
lattice site into another state with spin Ss induced by
some external parameter like strong magnetic field, high
pressure etc. It accompanies by the energy level E4 and
E; crossing, where FE, is the local energy of the magnetic
ion with spin S, (a = 1,2). Recently spin crossovers in
magnetic oxides have been found under high pressure
in FeB03 [1, 2], CdFe3 (B03)4 [3], B1F603 [4:], F8304
[5]. Below the Curie temperature of magnetic order spin
crossover is accompanied by the sharp change of the
magnetization, nevertheless it may be observed in the
paramagnetic state like in CdFes(BOs3)4 [1] as the sharp
change of the XES satellite/main peak intensity ratio
with pressure increase. There is no thermodynamic or-
der parameter that can distinguish one phase versus the
other. In this paper we discuss the low temperature limit
and claim that at 7' = 0 spin crossover is a quantum
phase transition. The order parameter for such transi-
tion has topological origin and we calculate the geomet-
rical phase that characterizes the spin crossover.

Quantum phase transition (QPT) is characterized by
qualitative changes of the ground state of many body sys-
tem and occur at the zero temperature [6]. QPT being
purely quantum phenomena driven by quantum fluctu-
ations, is associated with levels crossing and imply the
lost analyticity in the energy spectrum. In the parame-
ter space the points of non-analyticity, being referred to
as critical points, define the QPT [6]. For the Hermitian
Hamiltonian coalescence of eigenvalues results in differ-
ent eigenvectors, and related degeneracy referred to as
‘conical intersection’ is known also as ‘diabolic point’
[7, 8].
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Since QPT is accomplished by changing some para-
meter in the Hamiltonian of the system, but not the tem-
perature, its description in the standard framework of
the Landau-Ginzburg theory of phase transitions failed,
and identification of an order parameter is still an open
problem [9]. In this connection, an issue of a great in-
terest is recently established relationship between geo-
metric phases and quantum phase transitions [10—13].
This relation is expected since the geometric phase as-
sociated with the energy levels crossings has a peculiar
behavior near the degeneracy point. It is supposed that
the geometric phase, being a measure of the curvature of
the Hilbert space, is able to capture drastic changes in
the properties of the ground states in presence of QPT
[11-14].

In the context of the Berry phase the diabolic point
is associated with ‘fictitious magnetic monopole’ as fol-
lows. Assume that for adiabatic driving quantum system
two energy levels may cross. Then the energy surfaces
form the sheets of a double cone, and its apex is called a
“diabolic point” [15]. Since for generic Hermitian Hamil-
tonian the codimension of the diabolic point is three, it
can be characterized by three parameters R = (X,Y, 7).
The eigenstates |n, R) give rise to the Berry’s connec-
tion defined by A, (R) =i(n,R|Vg|n,R), and the cur-
vature B,, = Vg x A,, associated with A,, is the field
strength of ‘magnetic’ monopole located at the diabolic
point [16, 17]. The Berry phase v, = §, A, - dR is
interpreted as a holonomy associated with the parallel
transport along a circuit C [18].

Geometric phases and quantum phase tran-
sitions. Consider the diagonalizable Hamiltonian
HO) = Sy B[N (\)], depending on the
parameters A%, a = 1,2,...,r. Its ground state is given
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by |1g(A)) = ®N|1i(A)), and employing the standard
formula for computing of the Berry phase, we obtain

=i § Byl )X = 2%, (1)

where ; = fc dA® is the geometric phase associated
with the eigenvector |¢;(A)). Then applying the Stokes
theorem we obtain

(Vi|V o H [thm) (¥ | Vo H |1h;) AN AdA®
——lZZ// | [9m ) (Y |V H |1);) _

(Em — Ei)?

i=1 m#i

It follows herefrom that the curvature F(?) = dA®) di-
verges at the degeneracy points, where the energy levels,
say E, and E, 1, are crossing, and reaches its maximum
values at the avoided level crossing points. Thus, the
critical behavior of the system is reflected in the geome-
try of the Hilbert space through the geometric phase of
the ground state.

Since in the vicinity of the level crossing point only
the two-dimensional Jordan block related to the level
crossing makes the most considerable contribution to the
quantum evolution, the N-dimensional problem can be
described by the effective two-dimensional Hamiltonian
which can be obtained as follows. Let A. be a crossover
point at which the energies E, (\.) and E,11(A.:) coales-
cenc. In the two-dimensional subspace corresponding to
E,.()\.) and E,;1().), we choose an orthonormal basis
{]0),]1)} and complement it to the complete basis of the
N-dimensional Hilbert space by adding the eigenvectors
k(X)) (k #nyn +1).

Now, an arbitrary state |¢( )) can be expanded as
() = alt)]0) + BE)IL) + S0 sl s (B (A))-
Inserting this expansion into the time-dependent
Schrodinger equation, we obtain the coefficients a and
B as the solution of the two-dimensional Schrédinger
equation

0

i51u(t)) = Her (V]u(®)), (2)

where

(3)

,Hef(A)=< Xo+ Z X—iY)

X+iY X—-Z

and |u(t)) = ( ; ) The matrix elements in Eq. (3)

are determined by
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Ao = %((OIH(AHO) + (1HQ) 1)), (4)
X = %((UIH(A)Il) + (1HA)[0)), (5)
Y= %((OIH(A)I1> — (1H(X)[0)), (6)
Z= %((OIH(AHO) — (LHHX)[1)). (7)

Thus, in the neighborhood of diabolic point only
terms related to the invariant subspace formed by the
corresponding two-dimensional Jordan block make sub-
stantial contributions. The N-dimensional problem be-
comes effectively two-dimensional, and the quantum sys-
tem can be described by the effective two-dimensional
Hamiltonian H.y = Ao1+R-0o, where R()) = (X,Y, Z)
(for details see [19-21]).

The geometric phase in neighborhood of the diabolic
point can be written as follows

1 fR-dS
TR 5. "m + Z 7i(R) (8)

X i#n,n+1

where integration is performed over the surface ¥ C S2.
The behavior of the geometric phase described by the
first term is independent of a peculiarities of quantum-
mechanical system. One can consider the Bloch sphere
as an universal parameter space for description of QPT
in the vicinity of the critical point [22].

Following [11], we define the overall geometric phase
of the ground state as v, = (1/N) Efil ~;. In the ther-
modynamical limit v, = [v(z)du(z), where du(z) is
the suitable measure. As has been shown by Zhu [12] on
example of XY spin chain, the overall geometric phase
associated with the ground state exhibits universality,
or scaling behavior in the vicinity of the critical point.
In addition, the geometric phase allows to detect the
critical point in the parameter space of the Hamiltonian
[10—14]. These works indicate that the overall geomet-
ric phase 7, can be considered as the universal order
parameter for description of QPT.

The model. The multielectron ion with in the crys-
tal field has the energies of terms for d" configurations
determined numerically by the Tanabe-Sugano diagrams
[23] as a solution of the eigenvalue problem. Simple ana-
lytical calculations of the low energy terms with different
spin value that is sufficient to study spin crossover has
been done recently [24]. The crystal field parameter A
increase linearly with pressure P. Thus the multielec-
tron energies for spin Sy and S» (E; and E») are also
linear functions of P. To distinguish two different spin
states in the lattice we introduce the Ising pseudospin
states |i) and | — i) for |d?,Si) and |d?,Si), where i
runs over all sites in the lattice. Thus we neglect the
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spin degeneracy of the d} terms but capture the possi-
bility of energy level crossing that is the essential part
of the spin crossover. Then, in the basis | +¢), | — ¢}, the
Hamiltonian of the system can be written as follows

H= Z ()\f,]l+6i&f)+ZHij, (9)
1 1]

where \y = (B! + Ei)/2, ¢; = (E{ — Ei)/2, and 1,
0, are the identity and Pauli matrices, respectively; the
Hamiltonian of interaction between the spins being Hj;.

The H;; includes the isotropic Heisenberg term with
the exchange interaction I;; between nearest spins and
the anisotropic term H 4. The interatomic interaction Iij
is negligibly small in comparison with the interatomic
Hund’s coupling (ratio 1072). Thus its contribution to
the localized spin energy E; and F» due to the effec-
tive molecular field can be neglected. Nevertheless the
exchange interaction plays very important role: it re-
sults in the long range order and synchronize each spin
in the same quantum state providing a cooperative be-
havior of the spin system. If it were the ferromagnetic
interaction each spin at 7' = 0 would have the maximal
projection S with integer magnetic moment 2S. In all
examples given above there is the antiferromagnetic in-
teraction. The ground state of the isotropic Heisenberg
antiferromagnet has non integer local magnetic moment
due to the quantum spin fluctuations. It is known that
for large spin S effect of quantum fluctuations is less
important then for small spin, and for FeBOj3 spin is
5/2. Moreover the magnetic anisotropy additionally sup-
presses quantum fluctuations. For example, in FeBOg3
the anisotropy field is 0.3T' [25] and the measured value
of the effective moment 2,/S(S + 1) = 5.9 is very close
to the calculated for S = 5/2 value 5.916. Thus we con-
clude that due to anisotropy the magnetic moment at
T = 0 has integer value ( of course it is a property of the
magnetic insulator that does not hold for itinerant mag-
nets), and due to exchange interaction all spins are in the
same quantum state. So spin crossover at 7' = 0 is the
transition of the whole crystal from one magnetically or-
dered state to another. Nevertheless the criterium of the
transition can be found from consideration of the single
ion energies crossover due to space uniform cooperative
magnetic order. Anisotropic relativistic interactions, for
example a spin-orbital interaction, are also important
because can mix different spin states inside single ion.

In what follows we will consider the simplified spa-
tially uniform model described by the following Hamil-
tonian

N
H=> (Aol +e6.+ Aoy +\"5_). (10)

i=1

The spin-orbit coupling A mixes the different spin states,
and it plays the role of quantum fluctuations in our Ising
pseudospin basis. Both A\¢ and € are pressure dependent.
Further we assume £(P) = g —aP. The crossover takes
place when ¢(P,) =0 at P = P, = ¢o/a.

The Hamiltonian (10) is diagonalized by the unitary
transformation

1) = 3 (ul +1) + 0] ~ 1), (1)

[f2) = 3 (~ol +1) +ul 1), (12

where |+ 1) and | — 1) are eigenstates of the operator &,:

.| £1)==%|£1);u=+/1+¢/E,v=+/1-¢/E and

E = \/e% + p2, we denote p = |A|. After diagonalization
we obtain H = Y H;, where

H; = ey |p1)(p1]| + e—|p2)(p2] (13)

and e+ = Ao £ E. Due to perturbation there is a fi-
nite gap 2p between eigenstates at the crossover point

e = 0 (see Fig.1). At A » 0, v — /1+¢/|e| and

E

€ ‘B 1)
o)

|9y
|+1)

Fig.1. Energy levels crossing

v = /1—¢/le] . When P < P, we have u — /2,
v — 0 and |p1) = | + 1), |p2) = | — 1). After crossover
(P> P)u— 0,v— v2and|p1) — |—1), |p2) = |+1).
For A # 0 we can ascribe the definite spin to the ground
term |p2) only asymptotically. In order to study the geo-
metric phase in this system, we introduce a new Hamil-
tonian H(P, A, @) = U(p)HU (p), where U(yp) = €'+
and ¢ is slowly varying parameter, 0 < ¢ < 27 [22].
The transformed Hamiltonian H; takes the form

A A*e i
Hi= o 0 + E. ¢ (14)
0 Xo Aet? —£

The energy spectrum is given by ey = \g & 1/€2 + p2,
and the ground state energy is e_. The instantaneous
eigenvectors are found to be

—e gin? cos 2
|U,> = 9 2 ) |u+> = : 2 9 (15)
cos 3 e'? sin ¢

MMucema B ARIT® Tom 90 BeIm.7—8 2009



Spin crossover: the quantum phase transition ... 583

where cos@ = ¢/4/e2 + p?. Coupling of eigenvalues ¢
and £_ occurs at the diabolic point located at the origin
of coordinates.

The connection one-form associated with the ground
state is given by A = (u_|dJu—) = (1 — cos#)dy, and
computation of geometric phase yields vy = fc A, where
integration is performed over the contour C on the two-
dimensional sphere S2. Let us assume that the contour
C of integration is chosen as # = const. Then the geo-
metric phase related to the ground state is

7=w(1—cos€)=w<1—\/ﬁ7p2>. (16)

The lost of analyticity occurs at the diabolic point lo-
cated at the origin of the parameter space (RA, S\, ¢€).
In vicinity of the diabolic point the geometric phase be-
haves as a step function

(17)

_J 0, forp=0,e—+0 (6 —0)
T= or, forp=0,e = —0(0 - )

The geometric phase v and its derivative 0y/0e versus
p, € are plotted in Fig.2. As can be observed, the geomet-

]

i rNUWI””

Fig.2. Geometric phase v (a) and its derivative 0vy/de
(b) as a function of the Hamiltonian parameters p and ¢.
There is clear step-function behavior at the diabolic point
p=e=0

ric phase behaves as the step-function near the diabolic
point, and at the diabolic point one has the discontinuity
of the geometric phase with the gap of 2.

The overall geometric phase v, = (7/N) Y, v; can
be written as v, = 7w(1 + 0E,/J¢), where E, is the
ground state energy per spin [22]. Besides, one can show
that 7, = (1 + (3.)), where (5.) = (1/N) (i[5 [16,)
is the average sublattice magnetization per ion. In
our model 7, coincides with partial geometric phase
v;i = 1 — cos @, therefore the step-like behavior of (G,)
due to high spin-low spin term crossover reported in [26]
has the topological nature.
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Concluding remarks. In the limit p — 0 the crossover
becomes the QPT. The latter has a pure topological na-
ture and emerges as the quantum transition between the
ground states with the distinct winding numbers [27, 28].
This quantum number, being defined by the geomet-
ric phase, is related to a winding number of the map
S — U(1). Thus, the geometric phase can be con-
sidered as the topological order parameter in the spin
crossovers phenomena.
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