0 первопринципном расчете спаривательной щели в атомных ядрах

С. С. Панкратов, М. Балдо⁺, М. В. Зверев, У. Ломбардо^{*}, Э. Е. Саперштейн¹⁾, С. В. Толоконников

Российский научный центр "Курчатовский Институт", 123182 Москва, Россия

+ Национальный институт ядерной физики, 95123 Катания, Италия

*Национальный институт ядерной физики, Национальная лаборатория Юга; Университет г. Катания, Италия

Поступила в редакцию 10 сентября 2009 г.

Анализируется роль эффективной массы в первопринципном уравнении теории БКШ для спаривательной щели в атомных ядрах.

PACS: 21.60.-n, 21.65.+f, 26.60.+c, 97.60.Jd

Последовательной микроскопической теории тяжелых и средних ядер, основанной на первых принципах, до сих пор не существует. Однако в последние годы в этом направлении достигнут определенный прогресс. В частности, это относится к теории спаривания нуклонов в атомных ядрах. "Первопринципное" уравнение для щели Δ для конкретного ядра ¹²⁰Sn (реперного для проблемы спаривания) было решено в ряде работ Миланской группы [1-3]. Слово "первопринципное" взято в кавычки, так как речь идет лишь о первом шаге в проблеме - о решении уравнения теории Бардина-Купера-Шриффера (БКШ) для щели со свободным NN-потенциалом в качестве спаривательного взаимодействия. В [2, 3] рассматривались также многотельные поправки к теории БКШ в рамках подхода, оперирующего феноменологическими NN-силами. Помимо неопределенностей, связанных с выбором этих сил, в этом подходе имеются и неточности, вызванные неучетом охватывающих ("tadpole") диаграмм (см. обсуждение в [4, 5]). Здесь мы ограничимся анализом первопринципного уравнения для щели теории БКШ.

Во всех процитированных работах использовался Аргоннский NN-потенциал v_{14} . В первой из них применялся одночастичный базис модели оболочек (потенциал Саксона-Вудса) с эффективной массой $m^* = m$, и было получено значение $\Delta = 2.2$ МэВ, примерно в полтора раза превышающее экспериментальное ($\simeq 1.4$ МэВ). В последующих работах этой группы использовался самосогласованный базис, найденный в рамках метода Скирма-Хартри-Фока (СХФ) с эффективными силами, приводящими к зависящей от плотности эффективной массе $m^*(\rho)$. Конкретно применялись популярные силы SLy4, характеризующиеся маленькой эффективной массой, при рав-

Недавно были опубликованы результаты решения первопринципного уравнения БКШ [7, 8] сразу для большого числа ядер, основанные на использовании ставших популярными в последнее время реалистических так называемых "мягких" (low_k) сил, которые определены так, чтобы правильно описывать фазы свободного NN-рассеяния при $k < \Lambda$, где Λ – заданный параметр обрезания. При этом использовался тот же самосогласованный базис, основанный на эффективных силах SLy4, что и в [3]. Для рассматриваемого ядра ¹²⁰Sn было получено значение $\Delta \simeq 1.4\,\mathrm{M}$ эВ, которое совпадает с экспериментальным, не оставляя места для поправок к теории БКШ. Это обстоятельство вызывает вопросы. Действительно, существуют расхождения в абсолютной величине поправок к щели теории БКШ (см., например, [3] и [9]), но не в их знаке: все известные нам расчеты этих поправок увеличивают величину Δ , причем значительно. Поэтому решение уравнения БКШ должно приводить к величине щели меньше экспериментальной. В работе [8] было показано, что при совпадении остальных деталей расчета мягкие силы приводят к таким же результатам для щели, что и Аргоннский v₁₈ потенциал. Таким образом, имеются прямые противоречия в решении, казалось бы, однозначно поставленной задачи между миланской группой, с од-

новесной ядерной плотности равной $m^* \simeq 0.7m$. При решении уравнения БКШ были получены величины $\Delta \simeq 0.7 \,\mathrm{M}$ эВ в [2] и $\Delta \simeq 1.0 \,\mathrm{M}$ эВ в [3]. В дальнейшем анализе мы будем ориентироваться на второе, более позднее, значение. Отметим, что почти такое же значение щели было получено нами [6] при решении уравнения БКШ для плоского слоя ядерной материи с параметрами, имитирующими ядро ¹²⁰Sn. При этом использовался Аргоннский v₁₈ потенциал, лишь незначительно отличающийся от потенциала v₁₄, но применялся одночастичный базис с $m^* = m$.

¹⁾e-mail: saper@mbslab.kiae.ru

ной стороны, и Дуге с соавторами, с другой. В данной работе мы займемся анализом этого противоречия. Решая уравнение для щели для обсуждаемого ядра ¹²⁰Sn в различных предположениях о среднем поле, мы используем Парижский потенциал, сепарабельная форма которого [10, 11] облегчает решение. Прямое сравнение в [6] показало, что для плоского слоя различия в величине щели для Парижского потенциала и Аргоннского взаимодействия v₁₈ не превышают 10%. Это позволяет надеяться, что и в сферическом ядре результаты, полученные с Парижским потенциалом, примерно с такой же точностью можно сопоставлять с результатами для Аргоннских NN-сил.

Уравнение теории многих тел для спаривательной щели Δ [12] в символической записи имеет вид

$$\Delta(\mu) = -\int rac{darepsilon}{2\pi i} \mathcal{U}(\mu,arepsilon) A^s(E=2\mu,arepsilon) \Delta(arepsilon), \quad (1)$$

где U – неприводимый в канале двух частиц блок NN-взаимодействия, E – полная энергия в двухчастичном канале, μ - химический потенциал данного типа частиц, а $A^s = GG^s$ – двухчастичный пропагатор: G и G^s – одночастичные функции Грина соответственно в нормальной и сверхтекучей системах. Символическое умножение, как обычно, означает интегрирование по промежуточным координатам и суммирование по спиновым переменным. Термин "теория БКШ" используют в несколько различных смыслах. В теории ядерной материи под этим подразумевают замену в (1) блока $\mathcal U$ на свободный NNпотенциал V, а также использование простых квазичастичных функций Грина для G и G^s. Мы и для конечных систем придерживаемся такого же понимания этого термина. Тогда уравнение (1) упрощается и приводится к принятому в методе Боголюбова виду

$$\Delta = -\mathcal{V}\varkappa,\tag{2}$$

где аномальная матрица плотности $\varkappa = \int GG^s$ может быть выражена непосредственно через функции u и v,

$$\varkappa(\mathbf{r}_1, \mathbf{r}_2) = \sum_i u_i(\mathbf{r}_1) v_i(\mathbf{r}_2), \qquad (3)$$

которые подчиняются системе уравнений Боголюбова. Суммирование в (3) выполняется по полной системе боголюбовских функций с собственными энергиями $E_i > 0$.

В работах [1-3] система уравнений Боголюбова в сочетании с уравнением (1) для щели с реалистическим Аргоннским NN-взаимодействием v₁₄ решалась напрямую в базисе состояний { λ }, ограниченных фиксированной энергией $E_{\rm max}$. Трудность применения такого прямого метода решения проблемы ядерного спаривания связана с медленной сходимостью в уравнении для щели Δ сумм по промежуточным состояниям λ . Эти суммы являются аналогом интеграла по импульсам в уравнении для щели в бесконечной ядерной материи, плохая сходимость которого обусловлена короткодействующим характером NN-сил. В [1] использовалось значение $E_{\rm max}$ =600 МэВ, а в [2, 3] – $E_{\rm max}$ =800 МэВ. Анализ, выполненный в [6], показал, что даже использование такого, казалось бы, большого значения $E_{\rm max}$ позволяет найти решение для Δ только с точностью порядка 10%.

В серии работ, обобщенных в обзорах [4, 13], нами был развит двухступенчатый метод решения проблемы спаривания в конечных системах, связанный с концепцией эффективного взаимодействия. В этом подходе полное гильбертово пространство S проблемы спаривания разбивается явно на модельное подпространство S₀, включающее одночастичные состояния с энергиями меньше заданной величины E_0 , и дополнительное к нему подпространство S'. Уравнение для щели решается в модельном пространстве, причем в это уравнение вместо исходного NNвзаимодействия V входит эффективное спаривательное взаимодействие V_{eff}^p . Последнее находится решением уравнения типа уравнения Бете-Голдстоуна в дополнительном подпространстве. Преимущество такого подхода состоит в том, что при достаточно широком модельном пространстве эффектами спаривания в уравнении для V^p_{eff} можно пренебречь. Для расчета эффективного взаимодействия в задаче о спаривании в плоском слое был найден новый вариант локального приближения - локально-потенциальное приближение (LPA). Оно заключается в том, что в пространстве S' для каждой точки R можно пользоваться формулами бесконечной системы, помещенной в потенциальное поле $U(\mathbf{R})$ (отсюда и название приближения). Это делает уравнение для V_{eff}^p гораздо более простым, чем исходное уравнение для Δ , в результате чего пространство S' может быть выбрано очень большим. Непосредственным сравнением с прямым решением уравнения для V^p_{eff} было показано, что при достаточно большой величине E_0 (~20÷30 МэВ) LPA имеет высокую точность повсюду, включая поверхностную область. Это выгодно отличает его от стандартного локально-плотностного приближения (LDA), которое на поверхности практически не работает.

Как отмечалось выше, в наших расчетах щели для плоского слоя использовалась свободная масса $m^*=m$. Для этого были следующие основания. Вопервых, можно считать экспериментальным фактом близость m* и m в ядрах на поверхности Ферми. Только в этом случае удается описать одночастичные спектры ядер. В самосогласованной теории конечных ферми-систем [14] это объясняется почти точным сокращением на поверхности Ферми эффектов зависимости массового оператора нуклона от энергии ("E-mass") и от импульса ("k-mass"). В методе СХФ учитывается только последняя. Для большинства видов сил Скирма m* заметно меньше m, что приводит к чрезмерно разреженным одночастичным спектрам у поверхности Ферми. В этом отношении гораздо успешнее схемы с $m^*{=}m$ [15] или $m^*\simeq m$ [14]. Однако в уравнение для щели входит одночастичный спектр не только на поверхности Ферми, но и вдали от нее. В этой области использование свободной массы опиралось на тот факт, что эффективное спаривательное взаимодействие $V_{
m eff}^p$, найденное исходя из любого свободного NN-потенциала, имеет ярко выраженный поверхностный характер [4]. На поверхности оно примерно в 10 раз сильнее, чем внутри, поэтому поверхностная область в уравнении для Δ должна играть основную роль. А на краю ядра плотность ρ стремится к нулю и все средовые эффекты вымирают, то есть $m^* \to m$. Слабое место такой аргументации – в очень сильной (экспоненциальной) чувствительности щели Δ к взаимодействию: изменение V_{eff}^p благодаря отличию m^* и m даже во внутренней области ядра, где оно мало, может привести к заметным эффектам в величине Δ . Именно этот вопрос мы исследуем в данной работе применительно к обсуждаемому ядру ¹²⁰Sn.

Все физические причины для применимости приближения LPA в плоском слое остаются справедливыми и при переходе к реальным сферическим ядрам. Принципиально схема решения уравнения для щели при переходе к сферической геометрии не меняется. Признаком применимости LPA служит тот факт, что, начиная с некоторого значения Е₀, при дальнейшем его увеличении величина Δ практически не меняется. В случае рассматриваемого ядра ¹²⁰Sn таким значением оказалось $E_0 = 40 \,\mathrm{M} \Im B$. Уравнение для щели в модельном пространстве S₀ решалось в λ-представлении с использованием различных одночастичных базисов $\{\lambda\}$. Непрерывный спектр дискретизировался с помощью жесткой стенки радиуса $L = 16 \, \Phi$ м. Увеличение этого радиуса до $L = 24 \, \Phi$ м практически не меняет результатов. Радиальные собственные функции $R_{nli}(r)$ находились с шагом $h = 0.05 \, \Phi$ м. Мы использовали базис модели оболочек с потенциалом Саксона-Вудса со стандартным набором параметров, а также несколько самосогласо-

ванных базисов, полученных различными методами. Прежде всего, это обобщенный метод энергетического функционала плотности Фаянса и др. [15] с функционалом DF3, а также метод СХФ с различными видами сил Скирма. Первый метод оперирует голой массой, $m^* = m$, что объединяет его с моделью оболочек, во втором эффективная масса не равна т и зависит от плотности. Для выяснения роли эффективной массы мы выбрали два варианта сил Скирма, SKP и SKMS, для которых отличие m^* от m незначительно, и популярные силы SLy4, которые использовались во всех процитированных расчетах Δ и для которых отличие m^* от m велико. При расчете эффективного взаимодействия в пространстве S' полагалось $m^* = m$. В табл.1 приведены диагональные матричные элементы $\Delta_{\lambda\lambda}$ нейтронной щели в ядре ¹²⁰Sn для пяти уровней вблизи поверхности Ферми для каждого из рассмотренных базисов. Величина Δ_{F} – соответствующее ферми-среднее значение щели: $\Delta_{
m F}=\sum_{\lambda}\left(2j+1
ight)\Delta_{\lambda\lambda}/\sum_{\lambda}(2j+1)$. В последней строке приведено значение отношения нейтронной эффективной массы к голой в центре ядра, $m^{*}(r=0)/m$. Как видно, во всех случаях, кроме последнего, полученная щель заметно превосходит экспериментальное значение 1.4 МэВ. Это вынуждает нас признать, что учет значительного отличия эффективной массы от т в первопринципном уравнении для щели является обязательным.

На рис.1 для каждого варианта эффективных сил построена аномальная плотность $u(R) = \varkappa(R, r = 0),$

Рис.1. Аномальная плотность $\nu(R)$

где $\mathbf{R} = (\mathbf{r}_1 + \mathbf{r}_2)/2, \mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1$. Поскольку щель Δ пропорциональна этой величине, у $\nu(R)$ мы видим такую же зависимость от эффективной массы, что и у матричных элементов $\Delta_{\lambda\lambda}$ в табл.1. А именно, аномальные плотности для эффективных сил DF3, SKP и SKMS довольно близки друг другу, а для сил SLy4 с малой эффективной массой аномальная плотность заметно подавлена. Отметим выраженный поверхностный максимум в этой величине в каждом случае. Именно он приводит к поверхностному усилению спаривательной щели, обнаруженному для плоского слоя в [16], а для сферических ядер – в [17]. Следуя последней работе, для исследования пространственной картины парных корреляций в сферическом ядре мы рассчитали усредненный по углам квадрат аномальной матрицы плотности:

$$\varkappa^2(R,r) = \frac{1}{4\pi} \int |\varkappa(\mathbf{R},\mathbf{r})|^2 \ d\Omega \ . \tag{4}$$

Пространственное распределение куперовских пар, проинтегрированное по относительной координате, дается величиной

$$p(R) = 4\pi R^2 \int \varkappa^2(R, r) \ d^3r.$$
 (5)

Эта величина изображена на рис.2 для тех же четырех вариантов эффективных сил, что и аномальная плотность на рис.1. Как мы видим, отличие ради-

Рис.2. Радиальное распределение числа куперовских пар p(R)

альных распределений p(R), рассчитанных для сил DF3, SKP и SKMS, друг от друга невелико, а величина p(R) для сил SLy4 всюду подавлена, причем в поверхностной области – примерно вдвое. Интеграл от радиального распределения p(R) по R определяет полное число куперовских пар в рассматриваемом ядре. Оно равно 11.6 для функционала Фаянса DF3, 10.2 для сил Скирма SKP, 10.0 для SKMS и 5.7 для SLy4.

Напомним, что в случае скирмовских сил мы учитывали отличие эффективной массы от свободной только внутри модельного пространства, а при вычислении V_{eff}^p полагали $m^* = m$. Это принципиально

Письма в ЖЭТФ том 90 вып. 7-8 2009

Диагональные матричные элементы $\Delta_{\lambda\lambda}$ (МэВ) для нескольких вариантов самосогласованного базиса

	λ	SW	DF3	SKP	SKMS	SLy4
ſ	$3s_{1/2}$	1.52	1.64	1.55	1.55	1.17
	$2d_{5/2}$	1.60	1.73	1.68	1.64	1.24
	$2d_{3/2}$	1.64	1.80	1.71	1.68	1.26
	$1g_{7/2}$	1.85	2.11	2.02	1.91	1.37
	$2h_{11/2}$	1.58	1.79	1.69	1.64	1.18
	$\Delta_{\mathbf{F}}$	1.65	1.85	1.76	1.71	1.25
	$\overline{m^*}/m$	1	1	1.16	0.84	0.67

отличает наш расчет методом LPA от расчетов [3] и [7, 8], где следующая из функционала SLy4 эффективная масса использовалась для всех состояний. Чтобы иметь возможность более прямого сопоставления с результатами этих работ, мы произвели некоторую модификацию метода LPA, позволяющую учесть зависящую от плотности эффективную массу $m_n^*(\rho_n, \rho_p)$ для части пространства S', включающей импульсы k < $\Lambda,$ где Λ – заданный параметр. В духе LPA, для каждой точки R с потенциалами $U_n(R), U_p(R)$ естественно рассчитывать плотность частиц данного сорта au=n,p по квазиклассическим формулам: $ho_{ au}(R) = (p_{
m F}^{ au}(R))^3/3\pi^2, \; p_{
m F}^{ au}(R) =$ $= [2m_{ au}^*(
ho_n(R),
ho_p(R))(\mu_{ au} - U_{ au}(R))]^{1/2},\ \mu_n,\mu_p$ – химические потенциалы нейтронов и протонов в данном ядре. Мы провели для функционала SLy4 несколько альтернативных расчетов с различными значениями Л. Они обозначены SLy4-1 ($\Lambda = 3 \, \phi M^{-1}$), SLy4-2 $(\Lambda = 4 \, \phi M^{-1})$ и SLy4-3 $(\Lambda = 6.2 \, \phi M^{-1})$. Первые два варианта имитируют расчеты [7, 8], последний – [2, 3]. Результаты для щели представлены в табл.2.

Таблица 2

Диагональные матричные элементы $\Delta_{\lambda\lambda}$ (МэВ) для базиса Sly4 в зависимости от способа учета эффективной массы в уравнении для $V_{\rm eff}^p$

λ	SLy4	Sly4-1	Sly4-2	Sly4-3
$3s_{1/2}$	1.17	1.07	0.88	0.76
$2d_{5/2}$	1.24	1.13	0.93	0.80
$2d_{3/2}$	1.26	1.15	0.95	0.83
$1g_{7/2}$	1.37	1.23	0.99	0.85
$2h_{11/2}$	1.18	1.08	0.88	0.75
$\Delta_{\rm F}$	1.25	1.14	0.92	0.80

Как видно, спаривательная щель заметно уменьшается по сравнению с вариантом SLy4, в котором эффективное спаривательное взаимодействие рассчитывалось с $m^* = m$. В целом, значения $\Delta_{\lambda\lambda}$ ближе к

Таблица 1

результатам миланской группы, чем к результатам Дуге с соавторами. При этом для варианта Sly4-3 результат ближе к старому значению [2], чем к [3]. Конечно, делать окончательные заключения нужно с осторожностью, поскольку мы использовали Парижский потенциал, а не Аргоннские силы, как в процитированных работах. Однако для плоского слоя эти два вида свободных NN-сил приводят к очень близким результатам. Так, эффективные спаривательные взаимодействия $V_{\rm eff}^p$ для них различаются не более чем на 2% [18]. Поскольку щель зависит от $V_{\rm eff}^p$ экспоненциально, даже такие ничтожные изменения на величину Δ влияют, но лишь в пределах 10% [6]. На рис.3 показано как "ферми-среднее" эффективное

Рис.3. Ферми-среднее эффективное спаривательное вза-имодействие \mathcal{V}^F_{eff}

взаимодействие $\mathcal{V}_{\text{eff}}^{\text{F}}(R)$ [4] зависит от эффективной массы. Опять, на взгляд, небольшие изменения V_{eff}^p приводят к большим эффектам в Δ .

В заключение отметим, что проблема нахождения спаривательной щели в атомных ядрах из первых принципов, даже в приближении БКШ, оказалась сложнее, чем казалось. Результат в значительной степени определяется поведением эффективной массы нуклона вдали от поверхности Ферми. Что касается противоречий между результатами работ [2, 3], с одной стороны, и [7, 8], с другой, наши результаты оказались ближе к результатам миланской группы. Работа выполнена при поддержке грантов Министерства науки и образования # НШ-3004.2008.2 и # 2.1.1/4540, грантов Российского фонда фундаментальных исследований # 07-02-00553-а, # 09-02-01284-а и # 09-02-12168-офи_м, а также совместного гранта РФФИ и DFG, Германия, # 09-02-91352-ННИО_а, 436 RUS 113/994/0-1(R).

- 1. F. Barranco, R. A. Broglia, H. Esbensen, and E. Vigezzi, Phys. Lett. B **390**, 13 (1997).
- F. Barranco, R. A. Broglia, G. Colo et al., Eur. Phys. J. A 21, 57 (2004).
- A. Pastore, F. Barranco, R. A. Broglia, and E. Vigezzi, Phys. Rev. C 78, 024315 (2008).
- M. Baldo, U. Lombardo, E. E. Saperstein, and M.V. Zverev, Phys. Rep. **391**, 261 (2004).
- S. Kamerdzhiev and E. E. Saperstein, Eur. Phys. J. A 37, 333 (2008).
- S.S. Pankratov, M. Baldo, U. Lombardo et al., Nucl. Phys. A 811, 127 (2008).
- T. Duguet and T. Lesinski, Eur. Phys. J. Special Topics 156, 207 (2008).
- 8. K. Hebeler, T. Duguet, T. Lesinski, and A. Schwenk, arXiv:0904.3152v1 [nucl-th] 21 Apr 2009.
- А. В. Авдеенков, С. П. Камерджиев, Письма в ЖЭТФ 69, 669 (1999).
- J. Haidenbauer and W. Plessas, Phys. Rev. C 30, 1822 (1984).
- J. Haidenbauer and W. Plessas, Phys. Rev. C 32, 1424 (1985).
- А.Б. Мигдал, Теория конечных ферми-систем и свойства атомных ядер М.: Наука, 1965.
- Э. Е. Саперштейн, С. С. Панкратов, М. В. Зверев и др., ЯФ 72, 1059 (2009).
- V.A. Khodel and E.E. Saperstein, Phys. Rep. 92, 183 (1982).
- S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).
- M. Baldo, M. Farine, U. Lombardo et al., Eur. Phys. J. A 18, 17 (2003).
- N. Pillet, N. Sandulescu, and P. Schuck, Phys. Rev. C 76, 024310 (2007).
- С. С. Панкратов, М. Балдо, У. Ломбардо и др., ЯФ 70, 688 (2007).