
Pis'ma v ZhETF, vol. 90, iss. 9, pp. 676 { 680 c 2009 November 10Superconductor-insulator transition in thin metallic �lms induced byinterface-roughness scatteringA.GoldCentre d`Elaboration de Mat�eriaux et d`Etudes Structurales (CEMES-CNRS), 31055 Toulouse, FranceSubmitted 30 September 2009Disorder due to small random variations of the width L of thin �lms leads to scattering for superconductingparticles. It is shown for the �rst time that this disorder, interface-roughness scattering for bosons, gives riseto a superconductor-insulator transition, as observed for instance in amorphous Bi �lms. We present a modelcalculation of a disordered interacting Bose condensate in a quantum well of �nite width L. Films with L < LCare insulating, with LC as the critical width, while �lms with L > LC are superconducting. Disorder stronglyreduces the critical temperature TC of the superconducting phase and TC vanishes at LC . A phenomenologicaltwo-uid model is also discussed.PACS: 03.75.Kk, 73.50.�h, 74.20.�z, 74.78.DbSuperconductor-insulator transitions (SIT's) havebeen observed in metallic �lms (Bi, Pb, InO) andin high-TC superconductors. For a recent review seeRef.[1]. With decreasing width of �lms the normal stateresistance increases very rapidly for temperatures higherthan the critical temperature, see Fig.2 of Ref.[2]. It hasbeen found in experiment that �lms with a thickness Lsmaller than a critical (C) thickness LC behave isolatingfor temperatures approaching zero temperature, while�lms with L > LC behave superconducting for temper-atures smaller than a critical temperature TC [2]. Thiscritical temperature depends on disorder and is smallerthan the critical temperature of the bulk material TC0.From experiment it is clear that the width of �lms is acrucial parameter in describing the SIT and that it isrelated to disorder.Fluctuations of the width of thin �lms lead to stronguctuations of the con�nement energy, which give riseto strong disorder, the interface-roughness scattering(IRS). We suggest that IRS for electrons can explain thestrong increase of the normal state resistance with de-creasing width observed in these �lms [2]. In the presentwork we propose for the �rst time that IRS also is thesource of disorder for superconducting particles and weargue that IRS for bosons might explain the SIT ob-served at low temperatures.For quantum particles of mass m in the n-subbandof a quantum well (QW) of width L the con�nementenergy is given by En = n2�2~2=2mL2 and variations�  L � � < L of the well width give rise to uctuations�En / n2�=L3. This leads to scattering of quantumparticles in thin �lms and the disorder potential is pro-portional to n4�2=L6. It is well known that IRS is therelevant scattering mechanism for electrons in thin QW's

[3 { 5]. In such QW's the conductivity � increases as� / L6, as predicted by theory [6]. It was argued thatfor electrons in thin QW's a metal-insulator transition(MIT) occurs [6]. Such a MIT was seen in a recentexperiment on GaAs/AlGaAs superlattices [5].In the following we consider IRS for superconductingparticles in thin �lms. The �lm width is the crucial para-meter of our approach while in earlier work on bosons intwo dimensions only systems with zero width have beenconsidered. With decreasing width of �lms one observesa reduction of the critical temperature TC < TC0 withTC = 0 at the SIT. The reduction of TC can be causedby the reduction of the amplitude of the order parame-ter. In this case the order parameter should disappearsat the critical point and no superconducting pairs arepresent for L < LC . There exist also the possibilitythat the condensate becomes localized, and this wouldmean that in the insulating phase the amplitude of theorder parameter is still �nite. Here we consider the lattercase, when in the insulating phase the Bose condensateis localized due to disorder.In the present paper we discuss the e�ects of IRS onthe transport properties of an interacting Bose conden-sate. Some time ago we studied the e�ects of disorder ona Bose condensate at zero temperature in three [7] andin two [8] dimensions. This model is known as the dirtyBose model [9]. Using a mode-coupling approach wedescribed the transport properties of the condensate inthe presence of disorder. The mode-coupling approachcorresponds to a self-consistent theory for the current-current relaxation function. For weakly disordered sys-tems one obtains results in agreement with perturbationtheory. For strong disorder the theory describes a SIT.We argued that for strong disorder and/or low boson676 �¨±¼¬  ¢ ���� ²®¬ 90 ¢»¯. 9 { 10 2009



Superconductor-insulator transition in thin metallic �lms : : : 677density the Bose condensate is a Bose glass, where theBose condensate is pinned by disorder [7, 8]. In thepresent case of IRS we calculate the critical width LC ofthe SIT. We present new results concerning the inuenceof disorder on the critical temperature, as determinedby resistance measurements. Finally, we generalise theone-uid model to a phenomenological two-uid modelin order to discuss the possibility of a superconductor-metal transition (SMT).For zero temperature we consider a two-dimensionalsystem of bosons of density NB in the condensate phasein a QW of width L and with in�nite barriers. Therandom-�eld approximation is used to take into accountinteraction e�ects via the Coulomb interaction [10]. TheFourier transform of the Coulomb interaction poten-tial is given by V (q) = 2�e2BF (q; L)="Lq. The formfactor F (q; L) has been calculated earlier [11] and foran ideal two-dimensional system with L = 0 one �ndsF (q; L = 0) = 1. "L represents the background di-electric constant and the mass of the bosons is mB .Screening e�ects within the random-phase approxima-tion introduce an additional length scale into the systemand this scale is given by the screening wave numberqS = 2=(a�r2=3S ) / N1=3B , where a� = aH"Lme=mB isthe e�ective Bohr radius expressed with the hydrogenBohr radius aH = 0:529�A. me is the free electron massand rS is the Wigner-Seitz parameter in two dimensionsde�ned by r2S = 1=�a�2NB.For a QW the IRS for Bose particles in the conden-sate is described by a random potential with Gaussianform [6]< jU(q)j2 >= 2�5 �2�2L6m2B exp(�q2�2=4); (1)characterized by the uctuation length � of the wellwidth and the length � of the uctuation within the well[12]. The factor 2 in Eq.(1) represents the two inter-faces of the �lm. We stress that only within a model of�nite width disorder due to IRS can be discussed. Notethat the models discussed in [8, 9] are models where zerowidth was assumed.The essential parameter of the theory is the parame-ter A, which describes the inuence of the disorder onthe Bose condensate. A is given in terms of the ran-dom potential and the compressibility gI(q) of the Bosecondensate and is expressed as [8]A = 14�N2B Z 10 dqq < jU(q)j2 > gI(q)2; (2)with the compressibility of the Bose condensate given bygI(q) = 4NBmBq2S q=qSF (q; L) + q3=q3S : (3)

A describes, for zero temperature, the quantum-phasetransition from a superconductor for A < 1 to an insu-lator for A > 1 [7]. The transition point is de�ned byA = 1. In Fig.1 we show numerical results of the crit-ical well width LC versus condensate density NB . For
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D L= 2 = 15Å ÅFig.1. Critical width LC of the quantum well ofthe superconductor-insulator transition for interface-roughness scattering as function of the condensate densityNB for mB = 0:6me, eB = 2e, and "L = 10well width L > LC the Bose condensate is supercon-ducting while for well width L < LC an isolating Bosecondensate is found. This is in agreement with experi-ments where the width of the �lms was reduced and aSIT was found at LC [1, 2]. More recently, in experimentone could reduce the density of carriers and a SIT wasfound at a critical carrier density [13, 14]. In Fig.1 we seethat this also is in agreement with our calculation: de-creasing the condensate density for �xed well width leadsfrom a superconducting phase to an insulating phase ata critical condensate density NB;C . This is essentially ascreening e�ect, at lower density there is less screeningand disorder e�ects are stronger. The parameters usedin Fig.1 are adapted to Bi-�lms studied in [2, 13]. Thevariation of LC with boson density is weak, note thelogarithmic scale in Fig.1 for the boson density. How-ever, as function of the microscopic parameters � and� the critical width can strongly be changed, in agree-ment with experiment [2]. It was noted [13] that disordervaries weakly with density while it varies strongly withwidth. This is in agreement with our model: disorderdue to IRS, see Eq.(1) for q = qS and qS� � 1.If the Bose condensate is in the superconductingphase one �nds a �-peak in the real part of the dynamicalconductivity given by [7]�(! ! 0) = �NBe2BmB (1�A)�(!): (4)�¨±¼¬  ¢ ���� ²®¬ 90 ¢»¯. 9 { 10 2009



678 A.GoldThis �-peak shows that the Bose condensate is supercon-ducting for A < 1. A �nite value of disorder, describedby A, reduces the strength of the �-peak in the conduc-tivity. This can be interpreted as an e�ective supercon-ducting density NS = NB(1 � A). Note, however, thatin our theory the condensate density NB is assumed tobe independent of disorder. At the SIT the static con-ductivity is �nite and given by the critical Boson densityNB;C and by the parameter CC , also determined at thecritical point. C is the second parameter of the theorydepending on disorder and the compressibility and givenby [8] C = mB4�N3B Z 10 dq < jU(q)j2 > gI(q)3=q: (5)One gets for the conductivity at the critical point �C == NB;Ce2BC1=2C =mB . With eB = 2e we describe theconductivity at the transition point by the dimension-less coe�cient D2 as�C = e2D2=h: (6)Numerical results for the dimensionless parameterD2 versus NB are shown in Fig.2. From our calculationwe conclude that with increasing condensate density thecritical conductivity increases. This is in agreement withrecent experiments [13]. The conductivity at the tran-sition point is smaller than found in experiment where2 < D2 < 5 was reported [1, 2, 13]. However, we men-tion that our value of D2 was calculated for a small valueof � = 15 �A. For larger values of � one also gets largervalues for D2. This should be studied in more detail inthe future. Moreover, our calculation is for a one uidmodel (bosons), while in real metallic �lms two uids arepresent, bosons and fermions, and in experiments, madeat a �nite temperature, both uids might contribute tothe conductivity.For A = 1 the conductivity at the transition pointis �nite and the resistance as a function of temperaturewill never become zero: TC = 0 for A = 1 . We concludethat the critical temperature TC , determined via resis-tance measurements R(T ) by the condition R(TC) = 0,must depend on NS = NB(1 � A). Only for clean sys-tems without disorder, where A = 0, TC0 is determinedby NB . Suppose that the critical temperature of thesuperconducting transition without disorder is given byTC0 / N�B with an exponent �. We conclude that withdisorder the critical temperature is given byTC = TC0(1�A)� : (7)In a simple linear interpolation with TC = TC0 for A = 0and TC = 0 for A = 1 one gets TC = TC0(1�A). From

Eq.(7) we see that the critical temperature decreaseswith increasing disorder. Near the critical point one getsTC = TC0(1 � NB;C=NB)� or TC = TC0(1 � LC=L)� .Eq.(7) is derived for a Bose condensate. However, wemention that calculations for BCS superconductors alsoshowed a strong decrease of TC with disorder [15].Eq.(7) should also be applicable to the SIT in three-dimensional systems, for instance for thick �lms andbulk systems, and to other forms of disorder, for instanceimpurity scattering or alloy scattering. It is well knownthat for a free Bose gas in three dimensions one hasTC0 / N2=3B . From this we predict TC / (NB�NB;C)2=3if disorder is present. This relation was found experi-mentally for superuid Helium disordered by nanopores[16, 17]. In doped semiconductors the superconductiv-ity is inuenced by disorder, which can be modi�ed bydoping and annealing. Recently, superconductivity hasbeen found in Gallium-doped Germanium and a hugedi�erence has been found between the superconductingcharge carrier density NS = 1 �1014cm�3 and the normalconducting carrier density N = 1 � 1021cm�3 [18]. Webelieve that the di�erence between NS and N is due todisorder. This implies that the studied samples are nearthe SIT with A � 1.For weak disorder and for a short-range random po-tential we can characterize the parameter A / hjU(q)j2iby the conductivity �m � �(T � TC0) in thin �lm forT > TC in the metallic (m) phase. Here we assume that�(T � TC0) / L6=�2�2 is rather independent of tem-perature for TC < T < 2TC0, characteristic of a metallicsystem. For �m � �C we conclude that the variation ofthe critical temperature with the normal state conduc-tivity is given by TC � TC0 / 1=��m: (8)Eq.(8) is only valid for a short-range random potential.For � = 1 Eq.(8) can explain the nearly linear reduc-tion of the critical temperature with the resistance oftenfound in experiments.A real superconducting system consists of a mixtureof electrons and bosons. Including disorder we expectthe SIT for the Bose condensate (B) at a critical dis-order (D) potential UBD;C . For fermions (F) one ex-pects a MIT at UFD;C . Within a two-uid model theconductivity of the two uids will be additive and onhas to discriminate two cases. In the �rst case, whereUBD;C > UFD;C , there exists only a SIT at UBD;C , seethe left-hand side of the schematic Fig.3.It appears that in most materials such a situation isrealized [2, 13, 14]. In the second case, where UBD;C << UFD;C , two phase-transitions occur: with increasingdisorder �rst a SMT occurs at UBD;C and later a MIT�¨±¼¬  ¢ ���� ²®¬ 90 ¢»¯. 9 { 10 2009
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Fig.2. Critical conductivity � = e2D2=h at thesuperconductor-insulator transition for interface-roughness scattering versus condensate density NBfor mB = 0:6me, eB = 2e, and "L = 10
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Fig.3. Critical disorder potential UD;C versus carrier den-sity N = NB +NF within a two uid model for fermions(F) and bosons (B)occurs at UFD;C . An extended metallic phase existsbetween the superconductor and the insulator, see theright-hand side of the schematic Fig.3. In this metallicphase the Bose condensate is localized and the (metallic)electrons determine the transport properties. It is pos-sible that such a metallic phase has already been seen inexperiment [18 { 20].For UBD;C < UFD;C we expect thatTC = TC0(1� �C=�m)� (9)

is a good approximation, because localisation e�ects forelectrons can be neglected in this case. We stress thatthe data of Mo0:79Ge0:21 �lms [21], also described bythe theory [15] for BCS superconductors, can nicely bedescribed by TC = TC0(1� �C=�m)2 with TC0 = 7:3 Kand �C = 1=�C = 2300
. Note, that for Eq.(9) no as-sumptions have been made concerning the inuence ofdisorder on the microscopic parameters of the attractiveforce creating the superconducting particles.In the present paper we used an one-subband modelwith in�nite con�nement. While an one-subband modelis well adapted for a Bose condensate, because all bosonsare condensed to the lowest energy state, it might bequestionable for fermions. Moreover, only for in�nitecon�nement the � / L6 law for IRS is expected. For�nite con�nement the � / L6 power law is replaced bya weaker dependence � / L� where � depends on thecon�nement strength and the carrier density [22]. Sucha weaker dependence has already been seen in semicon-ductor QW's [4] and might explain the width depen-dence of the normal state resistance in thin metallic Bi-�lms showing a SIT at low temperature, see Fig.2 in [2].We suggest that measurements of the conductivity ver-sus �lm width could give direct information about thecon�nement strength and the microscopic parameters �and �.Finally, it should also be mentioned that the mor-phology of these thin metallic �lms [1, 2, 13] is far frombeing well understood. Doped semiconductors might bean alternative approach for the study of the SIT. In ad-dition we admit that in most materials the SIT happensfor a BCS superconductor and our results for a dirtycharged Bose condensate might only be of qualitativerelevance. On the other hand one knows that Bose con-densation (strong coupling) and BCS-superconductors(weak coupling) are related [23]. We stress that Eq.(4)is valid not only for a charged Bose condensate but alsofor a neutral Bose condensate and is independent of thedimension of the system. We assumed that disorder doesnot inuence the order parameter: the disorder consid-ered is not pair-breaking. This is an approximation.But our calculation clearly shows than even in this casethere exists a maximum amount of disorder, describedby A = 1, and superconductivity is only expected ifA < 1. For larger disorder the system is insulating.We claim that our theory [7, 8] describes an upperlimit of disorder where superconductivity with R = 0can be found. The novel ideas of the present paper are:(i) IRS is the important source of disorder in thin uni-form �lms and (ii) IRS also applies to bosons. IRS canonly be discussed in �lms of �nite width, here consideredfor the �rst time.�¨±¼¬  ¢ ���� ²®¬ 90 ¢»¯. 9 { 10 2009



680 A.GoldIn conclusion, we have proposed and investigatedinterface-roughness scattering for superconducting par-ticles in thin metallic �lms. A Bose condensate in aquantum well of �nite width (thickness) with Coulombinteraction and disorder has been used as model. Weshowed that interface-roughness scattering leads to asuperconductor-insulator transition at a critical widthor a critical boson density, in agreement with exper-iment on thin �lms. We deduced that disorder leadsto a strong reduction of the critical temperature and wediscussed this reduction qualitatively and quantitatively.A superconductor-metal transition is predicted using aphenomenological two-uid model. The new metallicphase consist of a localized Bose condensate with con-ducting electrons.1. V. F. Gantmakher and V.T. Dolgopolov, Uspekhi Fiz.Nauk 180, in press.2. H.M. Jaeger, D. B. Haviland, B.G. Orr, and A.M. Gold-man, Phys. Rev. B 40, 182 (1989).3. H. Sakaki, T. Noda, K. Hirakawa et al., Appl. Phys.Lett. 51, 1934 (1987); C. R. Bolognesi, H. Kroemer, andJ. H. English, Appl. Phys. Lett. 61, 213 (1992); F. Sz-mulowicz, S. Elhamri, H. J. Haugan et al., J. Appl. Phys.61, 043706 (2007).4. R. Gottinger, A. Gold, G. Abstreiter et al., EurophysicsLett. 6, 183 (1988); D.R. Luhman, D.C. Tsui, L.N.Pfei�er, and K.W. West, Appl. Phys. Lett. 91, 072104(2007).5. Y.A. Pusep, G.C. Gozzo, and R.R. LaPierre, Appl.
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