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 2009 November 10Contrasting Di�erent Scenarios for the Quantum Critical PointV.A.Khodel+�1), J.W.Clark�, M.V. Zverev++Russian Research Centre Kurchatov Institute, 123182 Moscow, Russia�McDonnell Center for the Space Science and Department of Physics,Washington University, MO 63130, USASubmitted 5 October 2009Competing scenarios for quantum critical points (QCPs) of strongly interacting Fermi systems signaledby a divergent density of states at zero temperature are contrasted. The conventional scenario, which enlistscritical 
uctuations of a collective mode and attributes the divergence to a coincident vanishing of the quasi-particle strength z, is shown to be incompatible with identities arising from conservation laws prevailing inthe fermionic medium. An alternative scenario, in which the topology of the Fermi surface is altered at theQCP, is found to explain the non-Fermi-liquid thermodynamic behavior observed experimentally in Yb-basedcompounds close to the QCP. It is suggested that combination of the topological scenario with the theory ofquantum phase transitions will provide a proper foundation for analysis of the extended QCP region.PACS: 71.10.Hf, 71.27.+aIntroduction. Fundamental understanding of thebehavior of Fermi systems in the vicinity of quantumphase transitions persists as one of the most challengingobjectives of condensed-matter research. As it involvessecond-order transitions occurring at a critical density�c, the problem is even more di�cult than in the classi-cal regime, since the description of quantum 
uctuationsentails a new critical index, the dynamical critical ex-ponent [1, 2]. In several heavy-fermion metals{notablyYb-based compounds [3]{critical temperatures TN(H)can be driven to zero by extremely weak magnetic �eldsH , creating a quantum critical point (QCP). It is com-monly believed that low-temperature 
uctuation contri-butions to the free energy, speci�c heat C(T ), and otherthermodynamic quantities must then follow power lawsin T , the Sommerfeld ratio C(T )=T being divergent atT ! 0.From a pedestrian standpoint, such non-Fermi-liquid(NFL) behavior must extend some distance from theQCP, implying separation at T = 0 of a domain ofmagnetic ordering from a Fermi-liquid (FL) regime{asis indeed the case in the heavy-fermion metal YbAgGe[4]. However, this example is unique; otherwise, the twophases seem to abut each other at the quantum criti-cal point (QCP). Since the standard FL formalism isapplicable on the FL side of the QCP, C(T )=T is pro-portional to the e�ective mass M� in this region and itfollows that M� must diverge at the QCP.1)e-mail: vak@wuphys.wustl.edu

Conventional arguments that quasiparticles in Fermiliquids \get heavy and die" [5] at the QCP commonlyemploy the textbook formulaMM� = z �1 + 1v0F �@�(p; ")@p �0� ; (1)where v0F = pF =M and the derivative is evaluated atp = pF and " = 0, single-particle (sp) energies be-ing referred to the chemical potential �. The factorz = [1� (@�(p; ")=@")0]�1 is the quasiparticle weightof the sp state at the Fermi surface. The conventionalbelief, traced back to Ref. [6], holds that the divergenceof M� at the QCP is caused by the vanishing of the zfactor in Eq. (1), stemming from the divergence of thederivative (@�(p; "; �c)=@")0 at implicated second-orderphase transition points.However, this scenario is problematic. As will beseen, the z-factor does not vanish at the points of second-order phase transitions. It will be argued that the di-vergence of the density of states N(T ) at the QCP is infact associated with a rearrangement of single-particledegrees of freedom [7], rather than with critical 
uctu-ations. Even so, the divergence of N(T ) at the QCPdoes give rise to some second-order phase transitions,occurring at T = TN in the vicinity of the QCP. Ac-cordingly, the full pattern of the temperature intervalfrom 0 to T � TN in the QCP region is determined byan intricate interplay between the two mechanisms. Thepresent analysis is limited to the disordered side of theQCP where the impact of sp degrees of freedom is deci-sive, while the role of critical 
uctuations is suppressed.�¨±¼¬  ¢ ���� ²®¬ 90 ¢»¯. 9 { 10 2009 693



694 V.A.Khodel, J.W.Clark, M.V. ZverevOther regions of the phase diagramwill be analyzed else-where.Fault lines of the conventional scenario for thedivergence of M�. We begin by exposing inconsis-tencies of the standard derivation leading to divergenceof (@�(p; ")=@")0 in the vicinity of second-order phasetransitions. This derivation is based on a fundamentalrelation of many-body theory,@���(p; ")@" =� 12Z U��
�(p; "; l; "1)@G�
(l; "1)@"1 dld"1(2�)4i ;(2)where U is the scattering amplitude, irreducible in thelongitudinal particle-hole channel.The treatment in question retains only the pole partGq of the sp Green function G = zGq + Gr and a sin-gular part of the diagram block U that is supposedlyresponsible for the divergence of (@�(p; ")=@")0. In thecase of critical spin 
uctuations addressed in Ref. [6],there is no the direct spin-
uctuation contribution to(@�(p; ")=@")0, while the exchange term has the formU��
�(p; "; l; "1) = g2����
��(q; q0) involving the spinsusceptibility �(q; q0), where q = jp � lj, q0 = " � "1,and g is a dimensionless e�ective coupling constant.On the FL side of the QCP, ���(p; ") = �(p; ")���and ImGq(p; ") = �2�sgn[�(p)]�(" � �(p)), where �(p)is an appropriate sp spectrum. In accord with the FLperspective and conventions, we now write U��
� �� Uo����
� + Us����
�, and the single component Uoenters Eq. (2), yielding@�(p; ")@" = � Z Uo(p; "; l; "1)@G(l; "1)@"1 dld"1(2�)4i : (3)Applying the identity ����
� = 32����
� � 12����
� ,we have Uo(q; q0) = (3=2)g2�(q; q0) and Eq. (2) reducesto [8, 6]�@�(p; ")@" �0 � �g2z� dpd�(p)�0 Z �(q; q0 = 0)qdq�2 :(4)A key assumption made in Ref. [6], and gener-ally adopted in subsequent treatments, is the Ornstein-Zernike (OZ) form�(q; q0 = 0) � �OZ(q) = 4���2 + q2 (5)for the static correlation function �(q), with the corre-lation length � diverging at the critical point. Insertingthis ansatz into Eq. (4) together with v0 = (d�(p)=dp)0 == v0FM=M�, and assuming that the momentum depen-

dence of �(p; ") is not altered dramatically, one arrivesat �@�(p; ")@" �0 � � g2v0F ln(pF �); (6)which implies that (@�(p; "; �)=@")0 diverges at � !1.However, the applicability of the OZ approximation toevaluation of (@�(p; ")=@")0 in the QCP domain hasnever been proved.This de�ciency exhorts us to check the compatibilityof the OZ approximation in homogeneous matter with aset of identities involving the derivative (@�(p; ")=@")0,all having the same structure as Eq. (2). In so doing,we observe that Eq. (2), which follows from particle-number conservation with the aid of the scalar gaugetransformation 	(t) ! 	(t)eiV t, is but one instance ofa class of similar identities [9]. Any conservation law ex-isting in the medium generates a corresponding identityinvolving (@�(p; ")=@")0. For example, momentum con-servation in homogeneous, isotropic matter, associatedwith the vector gauge transformation 	(t)! 	(t)eipAt,results in the well-known Pitaevskii relation [10]@�(p; ")@" = � Z Uo(p; "; l; "1)@G(l; "1)@"1 (pl)p2 dld"1(2�)4i :(7)Analogously, in the model of Ref. [6] the spin opera-tor �3 commutes with the Hamiltonian, and the gaugetransformation 	(t)! 	(t)ei�3V t leads to the relation@�(p; ")@" = � Z Us(p; "; l; "1)@G(l; "1)@"1 dld"1(2�)4i : (8)Even more conservation laws exist in nuclear and densequark matter, each providing an identity like Eq. (2).The standard manipulations applied to relation (2),leading to the result (6) via ansatz (5), can now be re-peated for any such conservation identity. Irrespectiveof which identity is chosen, a divergent result is obtainedfor (@�(p; "; �c)=@")0. Importantly, however, the signsof the divergent components of this derivative do de-pend on the choice made. For example, in the case ofcritical spin 
uctuations, adoption of the anzatz (5) re-sults in divergence of the derivative (@�(p; "; �c)=@")0whether Eq. (3) or Eq. (8) is adopted, but di�erent signsare delivered, since in the OZ approximation the blocksUo and Us have opposite signs. Thus, Eq. (3) providesan \acceptable" negative sign, whereas Eq. (8) gives a\wild" positive sign (and a meaningless limit for z). Inthe case of short-wave-length 
uctuations with criticalwave number qc, a similar wild result is obtained fromEq. (7) because the prefactor of the divergent part of�¨±¼¬  ¢ ���� ²®¬ 90 ¢»¯. 9 { 10 2009



Contrasting Di�erent Scenarios for the Quantum Critical Point 695(@�(p; ")=@")0 di�ers from that derived [11] from Eq. (3)by a factor cos �c = 1 � q2c=2p2F . Since the nonsingularcomponents of the block U are incapable of compensat-ing the divergent OZ contributions to (@�(p; "; �c)=@")0,we must conclude that the result (6) is fallacious, andthat more sophisticatedmethods must be applied to clar-ify the situation in the critical-point region.We call attention here to the situation for classicalsecond-order phase transitions, where the OZ correlationfunction (5) is altered by scattering of the 
uctuationsthemselves [12]. As a result, the actual correlation func-tion �(r; �c) decays more rapidly at large distance r than�OZ(r; �c) / 1=r. In momentum space, �(q ! 0; �c)behaves [12] as 1=q2��, with � > 0, compared with�OZ(q) / 1=q2. If a similar alteration of �(q ! 0; �c)occurs at T ! 0, then the integration leading to (6) issaturated at �! �c, ensuring that z(�c) 6= 0.Topological scenario for the QCP. With thecondition z(�c) = 0 ruled out, the e�ective mass inEq. (1) can only diverge at a density �1 where the fac-tor in square brackets, or equivalently the group velocity,changes sign. Such a QCP can be examined based onthe FL equation [10]v(p) = @�(p)@p = @�0p@p + Z f(p;p1)@n(p1)@p1 d�1; (9)where �0p is the bare sp spectrum and d� is the volume el-ement in 3D or 2D momentum space. The T = 0 groupvelocity, being a continuous function of the interactionfunction f(p;p1), changes its sign on the Fermi surfaceat the critical density �1. In 3D homogeneous matterthe critical condition is1 = f1(p1; p1)p1M=3�2; (10)where f1 is the �rst harmonic of f and p1 == (3�2�1)1=3. In this scenario, the QCP is associatedwith a rearrangement of single-particle degrees of free-dom; no collective parameter is involved, and the sym-metry of the ground state is not broken. Such topolog-ical phase transitions, induced by the interactions be-tween quasiparticles, have been discussed for over twodecades [7].For a homogeneous medium there are in general twoways to realize a divergent density of states N(0; �1).Both options are associated with bifurcation points pbof the equation �(p; �1) = 0. As a condition for the di-vergence of the e�ective massM�, Eq. (10) refers to thecase [13] pb = pF in which the sp spectrum �(p) has anin
ection point. In the second option, where pb 6= pF ,M� remains �nite, while N(0; �1) diverges due to van-ishing of the group velocity at the bifurcation point.

Thus far we have dealt only with homogeneoussystems. A comparable analysis of NFL behaviorof heavy-fermion metals must include the e�ects ofanisotropy, which are of special importance in the QCPregion. An early study of topological phase transi-tions in anisotropic electron systems in solids, inducedby electron-electron interactions, was carried out inRef. [14].Here it will be instructive to address the 2D electronliquid in a quadratic lattice, assuming the QCP electronFermi line to be approximately a circle of radius p1,with the origin shifted to (�=a; �=a). Since the groupvelocity vn(p) = @�(p)=@pn now has a well pronouncedangular dependence, the topological anisotropic QCP isto be speci�ed by the vanishing of vn(p; �;T = 0; �1) atthe single point p = p1; � = 0. On the disordered sideof the QCP, where @vn(p; �)=@� > 0, one hasvn(p; �;T = 0; �) = vn(p; � = 0) + a��2 + a�(�� �1);(11)where vn(p; � = 0) = ap(p � p1)2 as in the in
ection-point case treated in Ref. [13]. With the relation n(�) == [1 + exp(�=T )]�1, the QCP density of statesN(T; �) / 1T Z n(�)(1� n(�)) d� d�vn(p(�); �;T; �) (12)determines the corresponding speci�c heat C(T ) == TdS=dT � TN(T ) and thermal expansion coe�cient�(T ) � �@S(T; �)=@P � �T@N(T; �)=@�. To evaluateN(T; �1), we employ the relation�(p; �) = ap(p� p1)3=3 + a�(p� p1)�2; (13)which follows from Eq. (11) at � = �1. Solution ofthis cubic algebraic equation yields p � p1 as a func-tion of �. Inserting this function into Eq. (11) for thegroup velocity vn(�; �), the integral in Eq. (12) is read-ily evaluated. Upon introducing dimensionless variablesw = (ap=3�)1=3(p � p1) and u = pa�=ap(ap=3�)1=3�,one obtainsZ d�vn(p(�); �;T ) = aa1=2� v1=2n (p(�); �=0;T ) ; (14)where a ' 2 is a numerical factor given by the integrala = 1Z0 duw2(u) + u2 ; (15)in which w(u) is a real solution of the cubic equationw3 + 3u2w = 1. (We note that when Eq. (11) is ex-tended to �nite T , the group velocity vn(p; � = 0; T )�¨±¼¬  ¢ ���� ²®¬ 90 ¢»¯. 9 { 10 2009



696 V.A.Khodel, J.W.Clark, M.V. Zverevacquires an additional term / T 2=3 [13], but its inclu-sion reduces to an insigni�cant renormalization of thenumerical factor a). The resultsC(T; �1)/ Z n(�)(1� n(�)) d�v1=2n (p(�); � = 0;T ) / T 2=3(16)and�(T; �1)/Z n(�)(1�n(�)) v0n(�1)d�v3=2n (p(�); � = 0;T )/O(1);(17)then follow, where v0n(�) � @vn(�)=@� = a� by Eq. (11).The results (16) and (17) may be combined to determinethe behavior of the Gr�uneisen ratio,�(T; �1) = �(T; �1)=C(T; �1) / T�2=3; (18)which is at variance with the FL result � / O(1).Imposition of an external magnetic �eld greatly en-larges the scope of challenging NFL behavior, as re-
ected in the magnetic Gr�uneisen ratio �mag(T;H) == �(@S(T;H)=@H)=C(T;H). We now analyze this keyquantity within the topological scenario, again follow-ing the path established in Refs. [13, 15]. The originalFermi line is split into two, with consequent modi�ca-tion of �eld-free relations such as (9) and (12) throughthe appearance of half the sum of quasiparticle occu-pancies n�(�) = f1 + exp [(�� �eH)=T ]g�1. As a con-sequence, v�1n is replaced by half the sum of quantities(@�(p; �)=@pn)�1 evaluated at �(p; �) � �eH . Analyticintegration over � still goes through and yields half thesum of square roots of these quantities. In the limitT � �eH , terms linear in r = �eH=T cancel each other,such that the net result is proportional to r2, leading to�mag(T � �eH) / T�2: (19)More speci�cally, upon integration over � in the �eld-perturbed formulas for C(T;H) and S(T;H), the ensu-ing expressions involve half the sum (� + �eH)�1=3 ++ (�� �eH)�1=3, multiplied by a factor depending onlyon n(�). Integrating over the dimensionless variabley = �=T , the ratio S(T;H)=C(T ) is determined as afunction of r2 only, yielding the result (19) at r � 1.In the opposite limit r � 1, the density of statesN(T = 0; H) diverges at a critical magnetic �eld H1,where the function vn(p; �; T = 0; H1) vanishes on oneof the two Fermi lines p�(�) speci�ed by�(p�; �)� �eH = 0: (20)

The �eld-induced splitting that alters the relevant Fermi-surface group velocity can be compensated { for exam-ple, by doping{thereby providing the means for drivingthe system toward the QCP.At H > H1, the key quantity vn(p; � = 0;T == 0; H) � vn(H) becomes positive and FL behavior isrecovered, as in the isotropic case [15, 13]. To evaluatethe critical index specifying the divergence of the densityof states N(T = 0; H ! H1) / v�1=2n (H), we calculatethe spectrum from Eq. (20) (as in Ref. [13]) and insertthe result into Eq. (11), obtaining vn(H) / (H�H1)2=3and N(T = 0; H) / (H �H1)�1=3. ThusC(T ! 0; H) = S(T ! 0; H) / T (H �H1)�1=3 (21)and �(T ! 0; H) / T (H �H1)�1, so that �(T ! 0) // (H �H1)�2=3. Importantly, we arrive at�mag(T ! 0; H) = 13(H �H1)�1: (22)Such a divergence was �rst predicted within scaling the-ory [16], in which the peak of �mag(T = 0; H) is lo-cated at Hc, the end point of the line TN(H) whereTN (Hc) = 0. In the topological scenario, H1 does notcoincide with Hc.It is worth noting that all the results obtained abovefor the case of a 2D electron liquid on a quadratic lat-tice are readily transcribed for a 3D anistropic system.In particular, if we assume that the pre-QCP electronFermi surface in the latter system is an ellipsoid p1(�),the group velocity at the FL side of the QCP is given byan expressionvn(p; �;T=0; �)=bp(pn � p1(�))2+b��2 + b�(�� �1)(23)completely analogous to Eq. (11). In the correspondingformula for the density of states N(T; �), the integra-tions now go over dpnd�, where d� = 2�p2(�) cos �[1 ++(dp=d�)2=p2(�)]1=2d�. At low T the main contributionto N(T; �) comes from the region of small � / T , wherethe ratio (dp=d�)2=p2(�) is negligibly small, and one ar-rives at the expressionN(T; �) / 1T Z n(�)(1� n(�)) d� d�vn(p(�); �;T; �) (24)for the QCP density of states, which has of exactly thesame form as Eq. (12).Discussion. The results (16){(19), (21), and (22)are in agreement with available experimental data [17{20] obtained by the Steglich group in comprehensivestudies of the thermodynamic properties of Yb-basedheavy-fermion metals. These data also provide a test�¨±¼¬  ¢ ���� ²®¬ 90 ¢»¯. 9 { 10 2009



Contrasting Di�erent Scenarios for the Quantum Critical Point 697of modern phenomenological scaling theories of theQCP [16, 21]. The outcome of this test, as aired inRefs. [19, 21], is that no single model based on 2D or3D 
uctuations can describe these data, which requirethe following set of critical indexes having low probabil-ity: dimensionality d = 1, correlation-length exponent� = 2=3, and dynamical exponent 
 = 3=2.Recent studies of peaks in the speci�c heat C(T;H)in Yb-based compounds reveal another di�culty con-fronting the phenomenological theory of second-orderphase transitions in the QCP region. According to thistheory, at H = 0 the di�erence T � TN is the single rel-evant parameter determining the structure of the 
uc-tuation peak of the Sommerfeld ratio C(T )=T . How-ever, comparative analysis of corresponding experimen-tal data [20, 17] in YbRh2Si2 and YbRh2(Si0:95Ge0:05)2shows clearly that the structure of this peak is not uni-versal. As the QCP is approached, the peak graduallyshrinks to naught, again bringing into question the ap-plicability of the spin-
uctuation scenario in its vicinity.Thus, while the spin-
uctuation mechanism remainsapplicable at �nite T ' TN (H), it becomes inadequateat the QCP itself. Accordingly, the relevant critical in-dexes of scaling theory must be inferred anew from ap-propriate experimental data on the 
uctuation peak lo-cated at TN (H). Furthermore, the existing descriptionof thermodynamic phenomena in the extended QCP re-gion, including the peak at TN(H), must be revised byintegrating the topological scenario with the theory ofquantum phase transitions [1].The posited suppression of critical 
uctuations inYbRh2(Si0:95Ge0:05)2, which is situated extremely closeto the QCP in the sense that Hc = 0:027 T, con-
icts with the conclusion of Ref. [22] that the systemis on the verge of a ferromagnetic instability. The lat-ter assertion is based on extraction of the Stoner factorfrom measurements of the Sommerfeld-Wilson (SW) ra-tio RSW(T ) / �(T )=C(T ). However, such an extractionis straightforward only in homogeneous matter, wherethe magnetic part of the Hamiltonian is speci�ed by theBohr magneton �B . In dealing with electron systems ofsolids, this strategy is inconclusive unless a reliable re-placement �e� for �B is known. The authors of Ref. [22]have chosen the e�ective Bohr magneton �e� to be 1.4{1.6 �B , as determined from data on the magnetic suscep-tibility itself. Such a choice su�ers from double counting.If instead one uses the value �e� = 4:54�B, appropriatefor the atomic state of Yb3+, then the Stoner factor de-rived from the data remains below 3. Thus the con
ictis resolved.Conclusion. The conventional view of quantumcritical phenomena, in which the quasiparticle weight

z vanishes at points of related T = 0 second-orderphase transitions, is incompatible with a set of iden-tities based on gauge transformations associated withprevailing conservation laws. We have traced the fail-ure of the standard scenario to the inapplicability of theOrnstein-Zernike form ��1(q) = q2 + ��2 for the sta-tic correlation function �(q) in the limit � ! 1. Wehave discussed an alternative topological scenario anddemonstrated that its predictions for the thermodynam-ics of systems on the disordered side of the QCP arein agreement with available experimental data. Basedon these data, we infer that close to the QCP the roleof single-particle degrees of freedom is paramount, whilethe e�ects of critical 
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