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Competing scenarios for quantum critical points (QCPs) of strongly interacting Fermi systems signaled
by a divergent density of states at zero temperature are contrasted. The conventional scenario, which enlists
critical fluctuations of a collective mode and attributes the divergence to a coincident vanishing of the quasi-
particle strength z, is shown to be incompatible with identities arising from conservation laws prevailing in
the fermionic medium. An alternative scenario, in which the topology of the Fermi surface is altered at the
QCP, is found to explain the non-Fermi-liquid thermodynamic behavior observed experimentally in Yb-based
compounds close to the QCP. It is suggested that combination of the topological scenario with the theory of
quantum phase transitions will provide a proper foundation for analysis of the extended QCP region.

PACS: 71.10.Hf, 71.27.4+a

Introduction. Fundamental understanding of the
behavior of Fermi systems in the vicinity of quantum
phase transitions persists as one of the most challenging
objectives of condensed-matter research. As it involves
second-order transitions occurring at a critical density
Pe, the problem is even more difficult than in the classi-
cal regime, since the description of quantum fluctuations
entails a new critical index, the dynamical critical ex-
ponent [1, 2]. In several heavy-fermion metals—notably
Yb-based compounds [3]—critical temperatures T (H)
can be driven to zero by extremely weak magnetic fields
H, creating a quantum critical point (QCP). It is com-
monly believed that low-temperature fluctuation contri-
butions to the free energy, specific heat C'(T"), and other
thermodynamic quantities must then follow power laws
in T, the Sommerfeld ratio C(T')/T being divergent at
T — 0.

From a pedestrian standpoint, such non-Fermi-liquid
(NFL) behavior must extend some distance from the
QCP, implying separation at 7' = 0 of a domain of
magnetic ordering from a Fermi-liquid (FL) regime—as
is indeed the case in the heavy-fermion metal YbAgGe
[4]. However, this example is unique; otherwise, the two
phases seem to abut each other at the quantum criti-
cal point (QCP). Since the standard FL formalism is
applicable on the FL side of the QCP, C(T)/T is pro-
portional to the effective mass M™ in this region and it
follows that M™* must diverge at the QCP.
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Conventional arguments that quasiparticles in Fermi
liquids “get heavy and die” [5] at the QCP commonly
employ the textbook formula

where v% = pr/M and the derivative is evaluated at
p = pr and € = 0, single-particle (sp) energies be-
ing referred to the chemical potential u. The factor
z = [1—(0%(p, 5)/35)0]71 is the quasiparticle weight
of the sp state at the Fermi surface. The conventional
belief, traced back to Ref. [6], holds that the divergence
of M* at the QCP is caused by the vanishing of the z
factor in Eq. (1), stemming from the divergence of the
derivative (0%(p, €; p.)/0¢), at implicated second-order
phase transition points.

However, this scenario is problematic. As will be
seen, the z-factor does not vanish at the points of second-
order phase transitions. It will be argued that the di-
vergence of the density of states N(T') at the QCP is in
fact associated with a rearrangement of single-particle
degrees of freedom [7], rather than with critical fluctu-
ations. Even so, the divergence of N(T) at the QCP
does give rise to some second-order phase transitions,
occurring at T = T in the vicinity of the QCP. Ac-
cordingly, the full pattern of the temperature interval
from 0 to T > Tn in the QCP region is determined by
an intricate interplay between the two mechanisms. The
present analysis is limited to the disordered side of the
QCP where the impact of sp degrees of freedom is deci-
sive, while the role of critical fluctuations is suppressed.
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Other regions of the phase diagram will be analyzed else-
where.

Fault lines of the conventional scenario for the
divergence of M*. We begin by exposing inconsis-
tencies of the standard derivation leading to divergence
of (0%(p,€)/0¢), in the vicinity of second-order phase
transitions. This derivation is based on a fundamental
relation of many-body theory,

620(6 (p5 8) _ 1 BGB,Y (l, 81) dlde,
Oe = 2/Ua5’y/3(p’5’15 51) D, (27T)4i’
(2)

where U is the scattering amplitude, irreducible in the
longitudinal particle-hole channel.

The treatment in question retains only the pole part
G of the sp Green function G = zG? + G" and a sin-
gular part of the diagram block U that is supposedly
responsible for the divergence of (0% (p,e)/0¢),. In the
case of critical spin fluctuations addressed in Ref. [6],
there is no the direct spin-fluctuation contribution to
(0%(p,€)/0€)y, while the exchange term has the form
Uasva(P, €, 1 e1) = g?00pos5x(q, qo) involving the spin
susceptibility x(q, qo), where ¢ = |[p —1|, g0 = € — &4,
and g is a dimensionless effective coupling constant.

On the FL side of the QCP, X,5(p,e) = X(p,€)das
and Im G9(p,e) = —2wsgnle(p)]d(e — €(p)), where €(p)
is an appropriate sp spectrum. In accord with the FL
perspective and conventions, we now write Uysyg =
= Uyda50+3 + UsO 503, and the single component U,
enters Eq. (2), yielding

G 0,e) didey
/U p,E,l 51 651 (271')4Z (3)

o%( p,

Applying the identity oogoys = —50,557[3 Um;a',yg,
we have U, (g, 90) = (3/2)9°x (g, 90) and Eq. (2 ) reduces
to [8, 6]

(4)

A key assumption made in Ref. [6], and gener-
ally adopted in subsequent treatments, is the Ornstein-
Zernike (OZ) form

47

e O

x(¢, 90 = 0) = xoz(q) =
for the static correlation function x(g), with the corre-
lation length & diverging at the critical point. Inserting
this ansatz into Eq. (4) together with vy = (de(p)/dp), =

= v%M/M*, and assuming that the momentum depen-

dence of ¥(p, ) is not altered dramatically, one arrives

at
(Fe) ~-L matore) ©)

which implies that (0¥ (p, €; p)/0¢), diverges at { — oo.
However, the applicability of the OZ approximation to
evaluation of (0¥(p,e)/0¢), in the QCP domain has
never been proved.

This deficiency exhorts us to check the compatibility
of the OZ approximation in homogeneous matter with a
set of identities involving the derivative (0X(p, ¢)/0€),,
all having the same structure as Eq. (2). In so doing,
we observe that Eq. (2), which follows from particle-
number conservation with the aid of the scalar gauge
transformation ¥(t) — ¥(t)e’V?, is but one instance of
a class of similar identities [9]. Any conservation law ex-
isting in the medium generates a corresponding identity
involving (0%(p, €)/0¢),. For example, momentum con-
servation in homogeneous, isotropic matter, associated
with the vector gauge transformation ¥(t) — ¥ (t)ePAt,
results in the well-known Pitaevskii relation [10]

BG(l,El) (pl) dlde,
/U (e, Le1) Oer  p? (2m)%4’
(7)

Analogously, in the model of Ref. [6] the spin opera-
tor o3 commutes with the Hamiltonian, and the gauge
transformation ¥ () — ¥(t)ei”2V* leads to the relation

0% (p,e) 0G(l,e1) dldey
R LT ot

Even more conservation laws exist in nuclear and dense
quark matter, each providing an identity like Eq. (2).
The standard manipulations applied to relation (2),
leading to the result (6) via ansatz (5), can now be re-
peated for any such conservation identity. Irrespective
of which identity is chosen, a divergent result is obtained
for (0% (p,€; pc)/0¢e),. Importantly, however, the signs
of the divergent components of this derivative do de-
pend on the choice made. For example, in the case of
critical spin fluctuations, adoption of the anzatz (5) re-
sults in divergence of the derivative (0%(p,¢;p.)/0¢),
whether Eq. (3) or Eq. (8) is adopted, but different signs
are delivered, since in the OZ approximation the blocks
U, and U, have opposite signs. Thus, Eq. (3) provides
an “acceptable” negative sign, whereas Eq. (8) gives a
“wild” positive sign (and a meaningless limit for z). In
the case of short-wave-length fluctuations with critical
wave number ¢., a similar wild result is obtained from
Eq. (7) because the prefactor of the divergent part of

o%( p,

(8)
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(0%(p,€)/0€), differs from that derived [11] from Eq. (3)
by a factor cosf. = 1 — ¢2/2p%. Since the nonsingular
components of the block U are incapable of compensat-
ing the divergent OZ contributions to (0X(p, &; pc)/0€),,
we must conclude that the result (6) is fallacious, and
that more sophisticated methods must be applied to clar-
ify the situation in the critical-point region.

We call attention here to the situation for classical
second-order phase transitions, where the OZ correlation
function (5) is altered by scattering of the fluctuations
themselves [12]. As a result, the actual correlation func-
tion x(r, p.) decays more rapidly at large distance r than
xoz(r, pc) o 1/r. In momentum space, x(¢ — 0,p.)
behaves [12] as 1/¢®> ", with n > 0, compared with
xo0z(g) « 1/¢>. If a similar alteration of x(q — 0, p.)
occurs at T' — 0, then the integration leading to (6) is
saturated at p — p., ensuring that z(p.) # 0.

Topological scenario for the QCP. With the
condition z(p.) = 0 ruled out, the effective mass in
Eq. (1) can only diverge at a density po, where the fac-
tor in square brackets, or equivalently the group velocity,
changes sign. Such a QCP can be examined based on
the FL equation [10]

vip) = 2B % [ )2 )

where eop is the bare sp spectrum and dr is the volume el-
ement in 3D or 2D momentum space. The T' = 0 group
velocity, being a continuous function of the interaction
function f(p,p1), changes its sign on the Fermi surface
at the critical density po. In 3D homogeneous matter
the critical condition is

1 :fl(pooapoo)pooM/?’Trza (10)

where f; is the first harmonic of f and p, =
= (372pso)'/. In this scenario, the QCP is associated
with a rearrangement of single-particle degrees of free-
dom; no collective parameter is involved, and the sym-
metry of the ground state is not broken. Such topolog-
ical phase transitions, induced by the interactions be-
tween quasiparticles, have been discussed for over two
decades [7].

For a homogeneous medium there are in general two
ways to realize a divergent density of states N (0, poo)-
Both options are associated with bifurcation points pp
of the equation €(p, poo) = 0. As a condition for the di-
vergence of the effective mass M*, Eq. (10) refers to the
case [13] p, = pr in which the sp spectrum ¢(p) has an
inflection point. In the second option, where p, # pr,
M* remains finite, while N (0, poo) diverges due to van-
ishing of the group velocity at the bifurcation point.
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Thus far we have dealt only with homogeneous
systems. A comparable analysis of NFL behavior
of heavy-fermion metals must include the effects of
anisotropy, which are of special importance in the QCP
region. An early study of topological phase transi-
tions in anisotropic electron systems in solids, induced
by electron-electron interactions, was carried out in
Ref. [14].

Here it will be instructive to address the 2D electron
liquid in a quadratic lattice, assuming the QCP electron
Fermi line to be approximately a circle of radius po,
with the origin shifted to (w/a,m/a). Since the group
velocity v, (p) = Oe(p)/0pn now has a well pronounced
angular dependence, the topological anisotropic QCP is
to be specified by the vanishing of v, (p, $; T = 0, pso) at
the single point p = pey,® = 0. On the disordered side
of the QCP, where 0v,(p, ¢)/0¢ > 0, one has
Un(p, ¢aT = 0,,0) = vn(pa d) = 0) + a¢¢2 + a’P(p - pO(O)a)

11

where v, (p,¢ = 0) = a,(p — Poo)? as in the inflection-
point case treated in Ref. [13]. With the relation n(e) =
=[1+ exp(e/T)]!, the QCP density of states

de do
vn(p(€), ¢; T, p)

determines the corresponding specific heat C(T) =
=TdS/dT ~ TN(T) and thermal expansion coeflicient
B(T) ~ —0S(T,p)/OP ~ —TON (T, p)/dp. To evaluate
N(T, po), we employ the relation

Nmm«%/mmrm@) (12)

€(p, ) = ap(p — Poo)®/3 + ag(p — Poo)d’, (13)

which follows from Eq. (11) at p = ps. Solution of
this cubic algebraic equation yields p — po, as a func-
tion of e. Inserting this function into Eq. (11) for the
group velocity v, (e, @), the integral in Eq. (12) is read-
ily evaluated. Upon introducing dimensionless variables
w = (ap/?’f)l/g(l’ — Peo) and u = y/ a¢/ap(ap/3e)1/3¢,

one obtains

dp a
/vn(p(E),¢; T)  a) o (p(e), =0;T) ° -

where a ~ 2 is a numerical factor given by the integral

o0

/w2 )+ u?’ (15)

0

in which w(u) is a real solution of the cubic equation
w® + 3uw = 1. (We note that when Eq. (11) is ex-
tended to finite T, the group velocity v,(p,¢ = 0,T)
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acquires an additional term oc T2/ [13], but its inclu-
sion reduces to an insignificant renormalization of the
numerical factor a). The results

de
(p(e), ¢ =0;T)

C(T5 poo)oC /TL(G)(]_ - n(e))v1/2 x T2/3
(16)

and

X nle —nle U;l(pOO)dE X
BT e [ (1= ()75 BB 0()
)

then follow, where v}, (p) = Ov,(p)/9p = a, by Eq. (11).
The results (16) and (17) may be combined to determine
the behavior of the Griineisen ratio,

(T, pso) = B(T, Poo)/C(T, Poo) X T_2/3’ (18)

which is at variance with the FL result I" o« O(1).
Imposition of an external magnetic field greatly en-
larges the scope of challenging NFL behavior, as re-
flected in the magnetic Griineisen ratio I'mag (T, H) =
=—(0S(T,H)/0H)/C(T,H). We now analyze this key
quantity within the topological scenario, again follow-
ing the path established in Refs. [13, 15]. The original
Fermi line is split into two, with consequent modifica-
tion of field-free relations such as (9) and (12) through
the appearance of half the sum of quasiparticle occu-
pancies ny (€) = {1 +exp[(e = p.H)/T]} '. As a con-
sequence, v, ! is replaced by half the sum of quantities
(8e(p, ¢)/Opn) ™" evaluated at €(p,d) & peH. Analytic
integration over ¢ still goes through and yields half the
sum of square roots of these quantities. In the limit
T > p.H, terms linear in r = u,H/T cancel each other,
such that the net result is proportional to r2, leading to

Tinag (T > peH) oc T2 (19)

More specifically, upon integration over ¢ in the field-
perturbed formulas for C(T, H) and S(T, H), the ensu-
ing expressions involve half the sum (e 4+ p.H) /3 +
+ (€ — peH)~ /3, multiplied by a factor depending only
on n(e). Integrating over the dimensionless variable
y = €/T, the ratio S(T,H)/C(T) is determined as a
function of r2 only, yielding the result (19) at r < 1.

In the opposite limit » > 1, the density of states
N(T = 0,H) diverges at a critical magnetic field Ho,
where the function v, (p,»,T = 0, Hy,) vanishes on one
of the two Fermi lines p*(¢) specified by

e(p™,¢) + pH =0. (20)

The field-induced splitting that alters the relevant Fermi-
surface group velocity can be compensated — for exam-
ple, by doping—thereby providing the means for driving
the system toward the QCP.

At H > H,, the key quantity v,(p,¢ = 0;T =
= 0,H) = v,(H) becomes positive and FL behavior is
recovered, as in the isotropic case [15, 13]. To evaluate
the critical index specifying the diver§ence of the density
of states N(T = 0,H — Hy,) o v, "/ *(H), we calculate
the spectrum from Eq. (20) (as in Ref. [13]) and insert
the result into Eq. (11), obtaining v, (H) o (H —Hu,)?/?
and N(T =0, H) o« (H — Hy,)~'/3. Thus

C(T - 0,H)=S(T - 0,H) x T(H — Hy,) /3 (21)

and 3(T — 0,H) o T(H — Hy,) !, so that (T — 0)
x (H — Hy,)~?/3. Importantly, we arrive at

Tiag (T = 0,H) = 3 (H ~ Ho) ™. (22)

Such a divergence was first predicted within scaling the-
ory [16], in which the peak of I'mag(T = 0,H) is lo-
cated at H., the end point of the line T (H) where
Tn(H.:) = 0. In the topological scenario, Hs, does not
coincide with H.,.

It is worth noting that all the results obtained above
for the case of a 2D electron liquid on a quadratic lat-
tice are readily transcribed for a 3D anistropic system.
In particular, if we assume that the pre-QCP electron
Fermi surface in the latter system is an ellipsoid pe(f),
the group velocity at the FL side of the QCP is given by
an expression

U (D, 0; T=0, p)=bp(Pr, — Poo(6))*+be0” + bp(p — Poo)
(23)

completely analogous to Eq. (11). In the corresponding
formula for the density of states N (T, p), the integra-
tions now go over dp,do, where do = 2mp?(6) cos O[1 +
+ (dp/d)? /p*(0)]*/2dh. At low T the main contribution
to N(T, p) comes from the region of small § o< T', where
the ratio (dp/df)?/p?(0) is negligibly small, and one ar-
rives at the expression

de db
vn(p(€),0; T, p)

for the QCP density of states, which has of exactly the
same form as Eq. (12).

Discussion. The results (16)-(19), (21), and (22)
are in agreement with available experimental data [17—
20] obtained by the Steglich group in comprehensive
studies of the thermodynamic properties of Yb-based
heavy-fermion metals. These data also provide a test

N(T,p) ox / n(e)(1 - n(e)) (24)

MMucema B KIIT® Tom 90 BRID.9—10 2009



Contrasting Different Scenarios for the Quantum Critical Point 697

of modern phenomenological scaling theories of the
QCP [16, 21]. The outcome of this test, as aired in
Refs. [19, 21], is that no single model based on 2D or
3D fluctuations can describe these data, which require
the following set of critical indexes having low probabil-
ity: dimensionality d = 1, correlation-length exponent
v = 2/3, and dynamical exponent vy = 3/2.

Recent studies of peaks in the specific heat C (T, H)
in Yb-based compounds reveal another difficulty con-
fronting the phenomenological theory of second-order
phase transitions in the QCP region. According to this
theory, at H = 0 the difference T' — Ty is the single rel-
evant parameter determining the structure of the fluc-
tuation peak of the Sommerfeld ratio C(T')/T. How-
ever, comparative analysis of corresponding experimen-
tal data [20, ].7] in Ythlez and Ythz(Sio_95Geo_05)2
shows clearly that the structure of this peak is not uni-
versal. As the QCP is approached, the peak gradually
shrinks to naught, again bringing into question the ap-
plicability of the spin-fluctuation scenario in its vicinity.

Thus, while the spin-fluctuation mechanism remains
applicable at finite T' ~ T (H), it becomes inadequate
at the QCP itself. Accordingly, the relevant critical in-
dexes of scaling theory must be inferred anew from ap-
propriate experimental data on the fluctuation peak lo-
cated at T (H). Furthermore, the existing description
of thermodynamic phenomena in the extended QCP re-
gion, including the peak at T (H), must be revised by
integrating the topological scenario with the theory of
quantum phase transitions [1].

The posited suppression of critical fluctuations in
YbRh; (Sig.05Geo.05)2, which is situated extremely close
to the QCP in the sense that H. = 0.027 T, con-
flicts with the conclusion of Ref. [22] that the system
is on the verge of a ferromagnetic instability. The lat-
ter assertion is based on extraction of the Stoner factor
from measurements of the Sommerfeld-Wilson (SW) ra-
tio Rsw(T) o< x(T')/C(T). However, such an extraction
is straightforward only in homogeneous matter, where
the magnetic part of the Hamiltonian is specified by the
Bohr magneton pp. In dealing with electron systems of
solids, this strategy is inconclusive unless a reliable re-
placement pes for pp is known. The authors of Ref. [22]
have chosen the effective Bohr magneton pes to be 1.4—
1.6 up, as determined from data on the magnetic suscep-
tibility itself. Such a choice suffers from double counting.
If instead one uses the value pes = 4.54up, appropriate
for the atomic state of Yb3", then the Stoner factor de-
rived from the data remains below 3. Thus the conflict
is resolved.

Conclusion. The conventional view of quantum
critical phenomena, in which the quasiparticle weight
Mucema B AROT® Tom 90
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z vanishes at points of related T = 0 second-order
phase transitions, is incompatible with a set of iden-
tities based on gauge transformations associated with
prevailing conservation laws. We have traced the fail-
ure of the standard scenario to the inapplicability of the
Ornstein-Zernike form x~!(q) = ¢ + ¢=2 for the sta-
tic correlation function x(g) in the limit £ — oco. We
have discussed an alternative topological scenario and
demonstrated that its predictions for the thermodynam-
ics of systems on the disordered side of the QCP are
in agreement with available experimental data. Based
on these data, we infer that close to the QCP the role
of single-particle degrees of freedom is paramount, while
the effects of critical fluctuations build up on the ordered
side as the system moves away from the QCP.
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