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We propose a Frohlich-type electron-phonon interaction mechanism for carriers confined in a non-polar

quantum dot surrounded by an amorphous polar environment. Carrier transitions under this mechanism are
due to their interaction with the oscillating electric field induced by the local vibrations in the surrounding
amorphous medium. We estimate the corresponding energy relaxation rate for electrons in Si nanocrystals
embedded in a SiO2 matrix as an example. When the nanocrystal diameter is larger than 4 nm then the gaps
between the electron energy levels of size quantization are narrow enough to allow for transitions accompanied
by emission of a single local phonon having the energy about 140 meV. In such Si/SiO» nanocrystals the

relaxation time is in nanosecond range.

PACS: 73.21.La, 73.22.Dj, 78.67.Hec

1. Introduction. The Frohlich mechanism of
electron-phonon coupling is of key importance for car-
rier energy relaxation in bulk polar semiconductors as
well as in heterostructures formed by different polar ma-
terials [1-7]. One of the examples of such heterostruc-
tures is provided by semiconductor quantum dots of po-
lar material in a crystalline environment [4, 5]. In this
paper we analyze the Frohlich-like interaction within a
non-polar inclusion induced by a polar amorphous en-
vironment. Amorphous media are characterized by a
complex vibrational dynamics [8]. In particular, they
can possess high-frequency vibrational modes of local
(or rather quasi-local) character. These modes are not
restricted by any narrow frequency region and can be
found with a significant probability at practically any
frequency. An extensive review of this problem can be
found in Ref. [9]. In this work we will show that the lo-
cal modes in a polar amorphous medium can induce an
alternating electric field even within a non-polar inclu-
sion and thus provide an efficient channel for relaxation
of electronic excitations of the inclusion. The proposed
mechanism will be discussed as applied to electrons con-
fined in Si nanocrystals in SiO2, which has recently at-
tracted much attention [10-12].

The energy relaxation of an electron confined in a
nanocrystal can be induced by high-frequency vibra-
tions of silica glass in the spectral range of 120 meV
< hwph < 160 meV. These vibrational modes have been
widely studied by means of molecular dynamics simula-
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tions [13—16]. In Ref. [16] they were found to be highly
localized as their calculated participation ratio exhibited
the 1/N scaling with the system size, N. 2)

Although in other simulations substantially higher
participation ratios were found, [14] subsequent stud-
ies revealed [15] that, even for the high-frequency vi-
brational modes with relatively large participation ratio,
one can always select a small group of atoms oscillat-
ing with amplitudes exceeding a certain cutoff. In our
model we assign dipole moments to such groups of atoms
and introduce the distribution function of the dipole mo-
ments in spatial and spectral domains. To demonstrate
the proposed mechanism we will focus on the relatively
large QDs, where the gaps between the electron energy
levels allow the transitions with an emission of only one
local phonon of SiO,.

The rest of the paper is organized as follows. In
Sec.2 we describe a simplified model of a non-polar
spherical quantum dot surrounded by a polar environ-
ment and derive equations for the time of carrier relax-
ation induced by local vibrations in the environment.
In Sec.3 we estimate the parameters characterizing lo-
cal vibrations in a polar glass. In Sec.4 we present a
calculation using the values of parameters describing Si
nanocrystals in a SiOy matrix. Sec.5 is reserved for
conclusions. Some auxiliary derivations are given in the
Appendix.

2)The crosses and diamonds on Fig.7 of Ref. [16] should be in-
terchanged, as we ascertained from private communication with
Dr. C. Oligschleger.
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2. Interaction of confined electrons with lo-
cal vibrations of a polar glass. Let us consider
a spherical semiconductor nanocrystal embedded into a
polar glass matrix. We will characterize the jth local
vibration mode in the glass by the oscillating dipole mo-

ment
(1) =3 e u?

where e( ) and u(]) (t) are the charge and the displace-
ment of the i-th ion participating in the j-th local vi-
bration. The system under study is sketched in Fig.1,
where a random orientation of the dipoles is assumed.

Fig.1. Schematic illustration of the Si QD surrounded by
randomly oriented dipoles in SiO2 matrix. The radius-
vector ro is shown for one of the dipoles po

According to electrostatic approximation (see Ap-
pendix) the potential inside the nanocrystal of the radius
R and dielectric constant ¢;, induced by a point dipole
source with polarization p(] )5 (r— r(()] ) ), positioned in the
matrix with dielectric constant £,,¢, can be represented

as

ecp(r<Rr0 ,p]) —eZaJ[ ])]J+2X
< [pf vt (a8)], &)
where

_ /U DRIFD) 1
I ind + out(J +1) ~ ° _r(()j)'

(2)

and Y%, (n) are the vector spherical harmonics intro-
duced in Ref. [17].

Mucema B KIIT® Tom 90 BeIm. 9-10 2009

We neglect retardation and assume that the differ-
ent vibration modes are uncorrelated. Thus, the rate
of intraband transitions of the electron confined within
the spherical nanocrystal under the influence of the qua-
sistatic electric field induced by the local vibrations is
given by the Fermi golden rule,

Zlflesoro o)) 6(E; — By — hwld)),

3)

where summation runs over all the local modes of the
matrix, E; and Ey are, respectively, the energies of the
initial |i) and the final |f) states of the confined elec-
tron.The temperature dependence of the relaxation rate
is absent as the energy of phonons emitted hwl(fh) ~
~ 140 meV is much larger than kg7 even at room tem-
peratures (kg is the Boltzmann constant). The rather
broad distribution of the frequencies of local vibrations
allow to satisfy the energy conservation law in Eq. (3).
The interaction of electrons confined in a planar quan-
tum layer, where the electron energy spectrum is con-
tinuous, with surface phonons at the Si/SiO» boundary
was considered in Refs. [1, 6, 7]. In case of Si nanocrys-
tals both the electron spectrum and spectrum of sur-
face phonons are discrete and thus the probability to
find a granule where the energy conservation law for the
process involving the surface phonon mode holds seems
to be vanishingly small. Neglecting electron tunneling
outside the sphere, one can write the transition matrix
element as

7'loc

ezw[o]

x [o§) - Y35t ()] (4)

The strength of interaction in (3) decays as a power of
ro. Consequently, the relaxation rate is determined by
the interaction not only with the near-surface dipoles
p0 , but with a lot of the dipoles located at the dis-
tances 79 2 R from the QD surface. This character of
the interaction makes the relaxation rate insensitive to
the microscopic details of Si-SiO, interface. It is then
reasonable to replace the summation over the different
modes in (3) by an integration. We introduce the vibra-
tion distribution function as

<f|6g0( apo J+2 <f|7‘ YJM| >

80 pom). 5)

P(rg,Po,wph) = N8(ro — R) x

The first factor N0(ro — R) in (5) describes the uni-
form distribution of the vibrations in the volume ro > R
outside the QD with the concentration N. The sec-
ond factor stands for the isotropic orientation of the
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dipoles po in space with the distribution function of
the dipole lengthes f(pp). The last factor p(wpn) in
(5) is the distribution function of the vibrations over
the frequency. The vibration distribution function can
be rigorously obtained only by a sophisticated micro-
scopic calculation. Eq. (5), implying the independence
of rg, po and wpy, presents the simplest model of the
distribution of the dipoles, sufficient for the estimations
of the relaxation time presented below. Using the rule
Z(j) = [ dwpn [ d®ro [ d®*poP(ro, Po,wpn) we reduce
the summation over vibrational modes in Eq. (3) to
1 _ 2 E;—E;
fldl p( -

d3Po
Toc  h )N/ 47 f(po) x

< / dro|(Fle(xo, po)i)|7. (6)

(ro>R)

The angular integration can be done with the help of[17]

1
4r /dQPO /dQl‘o [Po - Y.ﬁ\_xll (e,)] x
2

20 5 1 5 Onina- (7)

«[po- Y1 (00" = &

Thus, after the averaging over pg, we get
1 27

Toe B’ (%)N/R drorg |(£lew(ro, Po) 1) [,
(8)

where the matrix element

[(Flep(ros Bo)li)? =
:/d4p0 (po /d9r0| fleg(ro, po)|i)|* =
) S Yol )

3 JM "0

depends only on the length of the vector 7o = |ro| and

(R = / dpof (po) 7. (10)

Performing the integration over o we finally obtain

1 _2ne®(p) N (p
Tloe 3h p( h )X

Z 2J + 1 R2J+1 |<f|TJYJM|Z>|2 (11)

3. Estimation of the introduced parameters.
We need to estimate the mean value of the dipole mo-
ment corresponding to a given local vibrational mode.
Let us first introduce characteristic values, v and M,

for the mean square displacement and atomic mass of the
atoms participating in the vibration, respectively (we ne-
glect the fact that we deal with different sorts of atoms).
This enables us to write

ZM ])2

where N is the number of atoms participating in the
vibration, wpn = “’1()]11) . At low temperatures

])ZNNMuw

NMyu? w ~ hwph,

h
o~ 12
U™\ NMowpn (12)

The dipole moment characterizing this vibrational mode
is related to u through

(po) ~ eu, (13)

where the factor v depends on the relative orientations
of displacements for atoms participating in the local
mode®). The other glass parameters entering Eq. (11)
are the concentration of dipoles, A/, and vibrational den-
sity of states, p. The concentration of dipoles is of the
order of

and, therefore,

N ~a 3Nt (14)

where a is the characteristic atomic scale. The rough
estimation for the density of states is p ~ 1/(Awpn). Nu-
merical simulations performed for silica glass [14—-16]
show that the actual phase volume of the high-frequency
localized vibrations is at least by a factor of 5 less than
the total phase volume. This factor decreases the den-
sity of states by about an order of magnitude.

4. Model calculation. In this Section we will per-
form a model calculation of the relaxation time of elec-
trons confined in relatively large quantum dots where
single-phonon transitions are possible. In the simplest
case the quantum dot can be treated as a spherical quan-
tum well with the infinite potential barrier. We consider
an electron from a simple band with an isotropic effec-
tive mass m* and use the effective mass approximation.
In this case the electron states are characterized by the
radial quantum number n, the orbital angular momen-
tum [, its projection m onto an arbitrary axis, and a

3)In the limiting case when the dipole characterizing a given
vibrational mode can be represented as ~ N elementary dipoles
oscillating in phase, v ~ N. We expect that randomization of
phases would lead to v ~ v/N.
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projection of the electron spin. Neglecting for simplicity
the electron spin, within the effective mass approxima-
tion one can characterize the electron states only by the
envelope wave function

_ ]2 Ji(pmir/R)
zﬁnlm(r) - \/;Yim(eago) jH—l(‘Pnl) ’ (15)

where ji(z) is the spherical Bessel function, the numbers
pnt are found from

Jilent) =0,
and the energy levels

R,
zm* R2 Qo'n,l

En = (16)

are degenerate over m [18]. Fig.2 shows the dependence
of first six energy levels on the nanocrystal diameter,
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Fig.2. Transition time between the first six energy lev-
els for different diameters of the nanocrystal. The levels
are labelled by n, and [. The transition time values in

nanoseconds between the corresponding pairs of levels at
given diameter are indicated near the vertical arrows

2R, for 2R > 4nm, where the value m* = 0.33 mg was
used (myg is the free electron mass), which corresponds
to the density of states mass in Si.

The conduction band of bulk Si has six equiva-
lent minima at the A points, and the electron effec-
tive mass is strongly anisotropic, m = 0.92m, and
m, = 0.19my [19]. This anisotropy leads to the splitting
of the energy spectrum (16) for a spherical band, so that
additional levels appear in comparison with Fig.2 [20].
It is also demonstrated in Ref. [20], that the finite barrier
for electron tunneling to SiO,, approximately equal to
3.2eV [21], shifts down electron levels, which is impor-
tant for small nanocrystals with diameter 2R < 4nm,
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but the electron density fraction outside the QDs is still
less than 0.1. However, for the dots with 2R > 4 nm the
energy levels (16) as a functions of the diameter more
accurate calculations [20] for a ground electron state and
a number of excited ones. Therefore it is reasonable to
apply the simplified model to relaxation time estimation
in the considered Si/SiO; nanocrystals. A transition
between two of the levels of size quantization with the
energies (16) is possible when their diameter-dependent
difference falls within the spectral range,

120 meV < Awpn < 160 meV, (17)

corresponding to high-frequency local vibrations of the
silica glass [16]. Vertical arrows in Fig. 2 indicate these
allowed regions and the corresponding transition time is
shown near each arrow. The calculation is carried out
for the set of QD parameters close to that of Si/SiO»
system: &, = 12, g0yt = 3. Our model is too simple
to describe the spectral dependence of glass parameters.
Thus, we take them at a fixed value in the middle of the
range (17), hwpn = 140meV. Other parameters used are
as follows: N = 15,y = VN, N = (1/N)-1.5-10*2cm—3
and p(fw) = 1/(5hwpn). The vibrating mass, My, was
taken as Mo = (1/3)Ms; + (2/3) Mo where Mg; and Mo
are the silicon and oxygen atomic masses, respectively.
Since the levels (16) are degenerate over angular mo-
mentum projection m, we have summed the relaxation
rate (11) over the final states and averaged over initial
ones.

Fig.2 demonstrates that typical value of the relax-
ation time is of the order of 1ns. The transition rate is
proportional to 1/R, so it changes with the nanocrystal
diameter slower than the energy difference proportional
to 1/R2.

5. Conclusions. = We have shown that interac-
tion of electrons confined in a non-polar quantum dot
with local vibrations of amorphous polar environment
provides an efficient energy relaxation channel for the
“hot” electrons. We have studied as an example the in-
terlevel transitions of electrons confined in Si nanocrys-
tals in SiO, matrix with diameters in the range of 4—
8 nm, where the transitions proceed through emission of
a single local phonon. For such relatively large nanocrys-
tals the values obtained for the transition times are in
nanosecond range. Energy relaxation in quantum dots
with smaller diameters should be controlled by multi-
phonon [22] or Auger-like [23] processes.
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Appendix.
Let us calculate electric field induced by a point di-
pole po positioned at the point ro outside the sphere
of radius R. Dielectric constants inside and outside the
sphere are ¢;, and £,y¢, respectively. We are interested
in the field inside the sphere. Within electrostatic ap-
proximation the electric field E can be expressed via
the scalar potential ¢ as

E = —gradp. (A1.1)
The Poisson equation for the potential ¢ reads
4
Ap = = divlpod(r —ro)] (ro > R),  (AL2)

Eout
and the boundary conditions at the sphere surface are
9p dp
(P|1':R70 — Q0|r:R+0a Ein 87' 'r:RfO_ Eout 67‘ r=R+0.
(A1.3)
In the case of a homogeneous medium (gi, = €out) the
solution of (A1.2) is obvious,

1
div Po .
[r —ro

po(r) = (AL4)

€ out

In what follows it is convenient to use the basis of vector
spherical harmonics YZ,,(8, ) [17]. The identity

P e Yy ¥ i (n0) o
|r — ro] JLM2L+1TJ;+1 JM Jum (o) - Pol,

where r~ = max(r,7),r< = min(r,r9),n = r/r,ng =
= ro/7o, is useful to present (Al.4) as a sum of scalar
spherical harmonics Yjps. After calculating the deriva-
tives we obtain

J
7.
> T Yomm)ém, r<ro
JM Tq
pory =4 (A15)
T
TOJH Yim(n)ninm, > o,
with
dr [ J+1 Ja1
_ - .Y + *
Eom — 57 1P Yiur (mo)l",
(A1.6)
4:7T J J—1
= ‘Y .
niMm font 2J+1[p0 7 (no)]

When ¢;, # €ous the scalar potential can be written
as

RJ
> T'JMYJM(n)m +po(r), (r>R)
p(r)=q"M r .
‘%\:ltJMYJM(n)W, (7‘ < R)
(ALT)

Substituting (A1.7) and (A1.6) into the boundary con-
ditions (A1.3) we find the coefficients ryps and tyas:

RJ+1

(2J + ]-)Eout
taim = &M —573
To €in

J+éeout(J +1)°
J(Eout - Ein)
€ind + Eout(J + 1),

RJ+1
riM = §IM 573
To

which allows to express the scalar potential as (1).
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