Измерение поперечного и продольного размеров источника испускания альфа-частиц, возникающих в ядро-ядерных столкновениях

В. В. Дубинина, Н. П. Егоренкова, В. И. Кроткова, Е. А. Пожарова, В. А. Смирнитский

Институт теоретической и экспериментальной физики им. А.И. Алиханова, 117259 Москва, Россия

Поступила в редакцию 16 октября 2009 г.

Измерена двухчастичная корреляция α -частиц, возникающих при фрагментации ядра-снаряда в ядро-ядерных столкновениях. Для случая многомерной параметризации корреляционной функции C(q)получены поперечный (R_{ts}) и продольный (R_{t0}) размеры источника испускания α -частиц: $R_{ts} = (1.81 \pm 0.22) \, \phi$ м и $R_{t0} = (2.38 \pm 0.23) \, \phi$ м.

PACS: 25.70.Mn

Корреляция тождественных частиц позволяет получить информацию о пространственной картине испускания частиц в процессе ядерной реакции [1]. Экспериментальные результаты исследования Bose-Einstein корреляций для мезонов опубликованы во многих работах [2]. Значительно меньше публикаций по Fermi-Dirac корреляциям тождественных частиц для протонов и дейтронов [3] и имеется всего одна работа о корреляциях а-частиц [4]. Эти результаты опытов относятся к центральной и околоцентральной области быстрот и псевдобыстрот (y'). Из этих работ известно, что размеры (R_i) источников (файерболлов) испускания тождественных частиц при одномерной параметризации тем меньше, чем тяжелее тождественные частицы: $R_{\pi} > R_k > R_p > R_d \sim$ ~ R_{α} [3]. Результаты этих измерений описываются релятивистской квантовой молекулярной динамикой (RQMD) [5].

Отсутствуют экспериментальные данные о корреляции тождественных α -фрагментов, возникающих в ядро-ядерных столкновениях при фрагментации ядра-снаряда, то есть при больших значениях псевдобыстрот (фрагменты вылетают в узком конусе, раствор которого определяется отношением фермиимпульса к продольным импульсам нуклонов ядраснаряда).

Корреляционная функция C(q) определяется следующим образом: $C(q) = N(Y_{i,j}(q)/Y_{i,j}^*(q))$, где $\mathbf{q} = |\mathbf{p}_i - \mathbf{p}_j|/2$ – половина модуля разности импульсов тождественных частиц при $i \neq j$, $Y_{i,j}(q)$ – просуммированное распределение значений q, измеренных и вычисленных в каждом ядро-ядерном столкновении; $Y_{i,j}^*(q)$ – фоновое распределение, полученное путем смешивания \mathbf{p}_i и \mathbf{p}_j из разных ядро-ядерных взаимодействий, N – нормировочный множитель. Для анализа экспериментальных данных используется одномерная и многомерная параметризация функции C(q). В нашей работе мы применили многомерную параметризацию C(q) для α -частиц в области псевдобыстрот, соответствующих фрагментации ядра-снаряда. Многомерная параметризация корреляционной функции, представленная в работе Bertsh-Pratt (BP) [3], имеет вид

$$C(q_l, q_s, q_0) =$$

= $N(1 - \lambda \exp(-q_l^2 R_l^2 - q_s^2 R_s^2 - q_0^2 R_0^2 - 2q_0 q_l R_{0l}^2)), \ (1)$

где N – нормировочный множитель, λ — параметр хаотичности, разность импульсов тождественных частиц **q** разлагается на продольную компоненту, **q**_l, и поперечную, **q**_t, которая, в свою очередь, разделяется на две составляющие компоненты: параллельную, **q**_s, и перпендикулярную, **q**₀, суммарному импульсу пары тождественных частиц. Несколько иной вид имеет многомерная параметризация, предложенная в работе Yano-Koonin-Podgoretsky (YKP) [3]:

$$C(q_t, q_l, q_0) =$$

$$= N(1 - \lambda \exp(-q_t^2 R_t^2 - (q_l^2 - q_0^2) R_l^2 - (qu)^2 (R_0^2 - R_l^2))).$$
(2)

Здесь $u = \gamma(1, 0, 0, \beta) - 4$ -скорость только с продольной компонентой, $\gamma = 1/(1 - \beta^2)^{1/2}$, \mathbf{q}_t и \mathbf{q}_l – компоненты разности импульсов тождественных частиц, спроектированные на перпендикулярное и продольное направления суммарного импульса, q_0 – разность их энергий, β – скорость источника испускания частиц (файерболла). Для анализа наших эксперимен-

тальных данных мы воспользовались параметризацией, предложенной в работе D. E. Fields et al. [2]:

$$C(q_{t0}, q_{ts}, q_l) = N(1 + \lambda \exp(-q_{t0}^2 R_{t0}^2 - q_{ts}^2 R_{ts}^2 - q_l^2 R_l^2)).$$
(3)

Эта формула содержит три компоненты вектора \mathbf{q} разности импульсов тождественных частиц: \mathbf{q}_{t0} – компонента в направлении импульса пары, \mathbf{q}_l – вдоль импульса ядра-снаряда, \mathbf{q}_{ts} – ортогональная первым двум. Первые две компоненты практически совпадают и мы, таким образом, имеем для корреляционного анализа два направления – продольное и поперечное.

Для многомерного анализа мы использовали экспериментальный материал, опубликованный в наших работах [6]. Эмульсионные камеры облучались в пучках ядер ²²Ne и ²⁴Mg с импульсами 4.1 и $4.5 \,\mathrm{A} \cdot \Gamma \Rightarrow \mathrm{B}/c$, соответственно, на ускорителе ОИ-ЯИ. Измерения проводились на автоматизированном микроскопе KSM, связанном в линию с ЭВМ. Подробности методики измерений и анализа взаимодействий опубликованы в [6]. Для корреляционных измерений использовались только те события, в которых наблюдалось не менее трех α-частиц. В каждом ядроядерном взаимодействии, в соответствии с формулой (3), вычислялся вектор $\mathbf{q} = |\mathbf{p}_i - \mathbf{p}_j|/2, i \neq j$, и три его проекции: q_{t0} – на направление суммарного импульса пары $\mathbf{p}_{i,j} = \mathbf{p}_i + \mathbf{p}_j, \, \mathbf{q}_l$ – на направление импульса ядра-снаряда \mathbf{p}_{pr} и \mathbf{q}_{ts} – ортогональное этим двум. Проекции \mathbf{q}_{t0} и \mathbf{q}_l практически совпадают, поэтому мы использовали две составляющие корреляционного вектора \mathbf{q} – продольную, \mathbf{q}_{t0} , и перпендикулярную, \mathbf{q}_{ts} . Эти две составляющие позволяют нам оценить продольный и поперечный размеры источника (файерболла) испускания α-частиц. Для анализа двухмерной корреляционной функции было измерено: 3979 пар α -частиц и вычислена функция $Y(q)_{i,j}$ и 40128 пар из смешанных ядерных столкновений для определения фоновой функции $Y^*(q)_{i,j}$. Нормировка Y(q)и $Y^*(q)$ проводилась по значениям $q_{ts} > 580\,{
m M}$ э ${
m B}/c$ и $q_{t0} > 5.8\,\mathrm{M}$ э B/c . Поправки на кулоновское взаимодействие пары α-частиц оценивались нами по работам [7]. Ошибки в угловых измерениях были включены квадратично в статистическую ошибку.

На рисунке показана зависимость корреляционной функции C(q) от значений q_{ts} (•) и q_{t0} (°). Для удобства визуального сравнения перпендикулярные и продольные значения проекций вектора нанесены по оси q_{ij} в одном масштабе ($q_{ts}/10$, а $q_{t0} \times 10$). Сплошная кривая на этом рисунке – результат подгонки зависимости C(q) от R_{ts} , а пунктирная – от R_{t0} . В результате получены поперечный и продольный размеры источника испускания α -частиц: $\begin{array}{c} 2.0 \\ 1.8 \\ 1.6 \\ 0.8 \\ 4 \\ 1.2 \\ 1.0 \\ 0.8 \\ 4 \\ 12 \\ 20 \\ 28 \\ 36 \\ 44 \\ 52 \\ 60 \\ 68 \\ 9_{ij} \\ (MeV/c) \end{array}$

Зависимость корреляционной функции C(q) от q_{t0} (\circ) и q_{ts} (\bullet). Сплошная кривая – результат подгонки C(q)для определения R_{ts} , а пунктирная – R_{t0} . Для удобства визуального сравнения проекции вектора **q** нанесены на оси q_{ij} в одном масштабе ($q_{t0} \times 10$, а $q_{ts}/10$)

$$R_{ts} = (1.81 \pm 0.22) \, {
m \phi}$$
м при $\chi^2 \sim 1$ (поперечный размер),

$$R_{t0} = (2.38 \pm 0.23) \, {
m \phi}{
m M}$$
 при $\chi^2 \sim 2.1$ (продольный размер).

Результаты подгонки экспериментальных данных дали два размера источника испускания α -частиц: поперечный и продольный, которые в пределах двух измерительных ошибок перекрываются. Однако если в продольный размер ввести поправку на γ -фактор (при фрагментации ядра-снаряда продольные скорости фрагментов сохраняются), то в этом случае имеем

$$R_{t0}^* = R_{t0} \, \gamma = (2.38 \pm 0.23) \gamma \,$$
фм $= (10.6 \pm 1.2) \,$ фм,

откуда следует, что $R_{t0}^* > R_{ts}$. Продольный размер источника (R_{t0}^*) сравним с размером среднего ядра мишени ($\langle A \rangle$ ядерной фотоэмульсии ~ 80), для которого имеем $\langle R \rangle_{\rm ядра} \sim 6.45$ фм и, следовательно, размер ядра $\langle L \rangle_{\rm ядра} = 2 \langle R \rangle_{\rm ядра} = 12.9$ фм.

Работа выполнена при финансовой поддержке Росатома. Авторы благодарят В.В.Шаманова за помощь при обработке результатов измерений.

- G. Goldhaber, S. Goldhaber, W. Lee, and A. Pais, Phys. Rev. **120**, 130 (1960); Г.И. Копылов, М.И. Подгорецкий, ЯФ **15**, 392 (1972); A.D. Chacon, J.A. Bistirlich, R. R. Bossingham et al., Phys. Rev C **43**, 2670 (1991); G. Baym, Acla Phys. Polonica B **29**, 1839 (1998).
- J. P. Sullivan, M. Berenguer, B. V. Jacan et al., Phys. Rev. Lett. **70**, 3000 (1993); D. E. Fields, J. P. Sullivan, J. Simon-Gillo et al., Phys. Rev. C **52**, 986 (1995); C.

Ciocca, M. Cuffiani, and G. Giacomelli, arXiv: 0712.0668 [hep-ex].

- M. M. Aggarwal, Z. Ahammed, A. L. S. Angelis et al., (WA98 Collab.), arXiv: 0709.2477 [nucl-ex]; А. В. Блинов, М. В. Чадеева, ЭЧАЯ **39**, 1015 (2008).
- 4. В. В. Дубинина, Н. П. Егоренкова, В. И. Кроткова и др., Письма в ЖЭТФ 87, 420 (2008).
- H. Sorge, H. Stöcker, and W. Greiner, Nucl. Phys. A 498, 567 (1989).
- В. В. Дубинина, Н. П. Егоренкова, В. И. Кроткова и др., ЯФ 67, 537 (2004); ЯФ 70, 346 (2007).
- Yu. M. Sinyukov, R. Lednicky, S. K. Akkelin et al., Phys. Rev. Lett. B 432, 248 (1998); G. Baym and P. Braun-Manzinger, Nucl. Phys. A 610, 286 (1996).