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Given a 4d N' = 2 SYM theory, one can construct the Seiberg-Witten prepotentional, which involves a sum
over instantons. Integrals over instanton moduli spaces require regularisation. For UV-finite theories the AGT
conjecture favours particular, Nekrasov’s way of regularization. It implies that Nekrasov’s partition function
equals conformal blocks in 2d theories with Wy, chiral algebra (virasoro algebra in our case). For N, = 2 and
one adjoint multiplet it coincides with a torus 1-point Virasoro conformal block. We check the AGT relation
between conformal dimension and adjoint multiplet’s mass in this case and investigate the large mass limit of
the conformal block, which corresponds to asymptotically free 4d N/ = 2 super symmetric Yang-Mills theory.
Though technically more involved, the limit is the same as in the case of fundamental multiplets, and this

provides one more non-trivial check of AGT conjecture.

PACS: 11.15.-q, 11.25.Hf

1. Introduction. N = 2 super symmetric Yang-
Mills (SYM) theories have attracted attention for rather
a long time, because they are ideally suited for the study
of interplay between perturbative and non-perturbative
effects and for manifestation of various dualities [1—4].
Depending on the fields content, these theories exhibit
all types of renormalization behaviour of effective cou-
pling constant g: it may tend to infinity (Landau pdle),
and to zero (asymptotic freedom with dimensional trans-
mutation in IR) or remain constant (UV-finite).

In N = 2 SYM theory the low-energy effective ac-
tion is Abelian and its most important part is expressed
in terms of the prepotential. Prepotential contains one-
loop perturbative contribution and a far more sophis-
ticated non-peturbative part, obtained as a sum over
instantons. It was explicitly found by N.Seiberg and
E.Witten (SW) [1, 2] with the help of duality arguments,
and the answer was soon reformulated in terms of the
spectral surfaces and simple integrable systems [5, 6].
The spectral curves were later interpreted in terms of
branes. Straightforward evaluation of instanton sums
is rather difficult, especially because some of the inte-
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grals over instanton moduli spaces diverge. See [7] for a
comprehensive review and references.

A very successful direct caluculation was finally pro-
vided by N.Nekrasov [8]. He introduced a new partition
function, depending on additional parameters €; and e,
such that the limit €;,ea — 0 reproduces SW prepo-
tential.

Recently F.Alday, D.Gaiotto and Y. Tachikawa
(AGT) made a ground-breaking conjecture that
Nekrasov functions coincide with conformal blocks [9]
of 2d Liouville/Toda models, and the e-parameters are
needed to allow arbitrary values of the central charge
in their chiral Wy, algebras (for N, = 2 the chiral
algebra is just the ordinary Virasoro). AGT suggest
a non-trivial association of conformal blocks with
UV-finite 4d quiver models. The 4-point tree Virasoro
block is associated with the N, = 2 gauge theory with
2N, = 4 additional fundamental matter supermultiplets.

If there is instead, a single adjoint matter multiplet
which also makes 4d theory UV-finite, the associated
conformal block is the toric 1-point function. This claim
was made in [10] and partly checked in [11]. We also con-
firm this relation and check it in one more way. Namely,
we consider the limit of the large mass of adjoint mul-
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Triple vertex with two Virasoro descendants and the 1-
point toric conformal block, obtained by taking a trace
over Vermat module with a given dimension A. Each line
is charaterized by dimension, by Ferrers diagram and ex-
ternal legs are also labeled by the position of the vertex

operator on the Riemann surface

tiplet, where it decouples and the 4d theory turns into
asymptotically free pure gauge N = 2 SYM. This pure
gauge theory can be also obtained as the large-mass limit
of the theory with 4 fundamentals, which implies that the
corresponding limits of the tree 4-point and the toric 1-
point conformal blocks (Figure) should be the same. The
first limit has already been studied in [12, 13]. We find
the second limit and show that it is indeed the same.

2. AGT relations. AGT hypothesis consists of sev-
eral statements about relations between 2d CFT and 4d
N =2 SYM theories. One of the statements is that per-
turbative part of Nekrasov partition function is equal
to the product of DOZZ factors [14, 15], defining de-
pendence of the triple functions in 2d Liouville theory
on dimensions. Even more important and interesting is
another part of this conjecture: the instanton part of
Nekrasov partition function is equal to conformal block
in 2d CFT (which depends on the chiral algebra, but
not on the other details of 2d conformal model). Many
examples were considered in [10] and later discussed in
some detail [16-31, 11].

A list of many Nekrasov functions is available in nu-
merous papers, starting from original [8]. More difficult
is the situation with conformal blocks. Like Nekrasov
functions they are formal series; in the simplest cases of
interest in the present paper they are in one variable,

B(z) = iz"l’)’("), (1)

n is called the “level”, and particular quantities B(™ are
built from two kinds of ingredients: Shapovalov form

(L-viVa|LovVa)

(valva)

Qa(Y1,Ys) = (2)

and two kinds of triple vertices [19]

(L-viV1(0)L_y,V2(1) Ly, V3(c0))
(V1(0)V2(1)V3(o0)) (’)
3

7123(Y1aY25Y3) =

<L_Y3V3‘L_Y1V1(1)L_Y2V2(O)>

F123(Y1,Ya, Y3) = <V3‘V1(1)V2(0)>

(4)

Here V are vertex operators, satisfying operator product
expansions

Vi(z1)Va(@s) =) (w1 — @) 21 T22 2 Ch Vi () (5)
k

Operators are made from primaries by the action of Vi-
rasoro generators. Virasoro descendants are labeled by
Young-Ferrers diagrams Y;. Ferrers diagram is a se-
quence of integer numbers k; > ks > ks.... So we define
L_y as L_yV = "'L—k3L—k2L—k1V'

Using the integral definition of Virasoro operators
one can get the following relation:

(L [B)V(0)) = (W [1EO)EV5) 0) +
+ (|- 0nrO) +
+ (1+n)A, <V1‘V2(1)V3(0)> +

+ Yl (M| L) (WWE©), ve. (©)

k>0

It is valid for arbitrary fields V;, not obligatory primary
ones [19]. Using this formula we can calculate all needed
%12;3. The 4-point conformal block was computed al-
ready by many authors, because in this case we need only
¥12:3(0,0,Y), for which there is the well known general
formula. The 1-point torus conformal block, which is of
interest for us here, is made from a more complicated
¥12:3(0,Y>2,Y3), which is not yet known in the general
form. Thus we need to compute these vertices one by
one.

Writing the correlator of 4 fields and expanding it
with the help of (5) and using recently introduced nota-
tions we get

B 4(171)point = Z

[Ya|=[Ya|=n

'712;a(Ya)Q£1 (Yo, Yp)vp34(Yp)-

(7)

It is clear that to compute the conformal block one
should use v instead of each vertex and Q' instead
of inner lines.
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From the AGT relation for the 4-point conformal
block we obtain

In these relations a is a v.e.v. of the 4d SYM theory.
They were originally obtained in [10] and [18]. Never-
theless we defined one external dimension and power of
n-multiplier.

3. 1-point conformal block on a torus. The for-
mula to calculate 1-point torus conformal block (Figure)
is

= Z ¢"B™ = (9)

= Z q‘Yl L_ Y‘/'1|Vezt

Y1,Ys

) L1, 2(0)) Q5! (Y1, V).

Besides z it depends on two dimensions, A and A.,; and
on the central charge c. AGT conjecture identifies this
conformal block with analogous expansion of Nekrasov
partition function

N(g) = (¢ () Zq”/\/ ZN (10)

o0
— 2—141_‘[1_(1

is the Dedekind eta function, ¢ = €*™\7 7 = 4mi/g* +
+ 60/27 is complex coupling constant. N () depends on
the v.e.v. modulus a, on adjoint multiplet’s mass m and
also on €; and e,.

3.1. The First Level The AGT relation
{A,Aczt,cy & {a,m,e1,e} can be found from
equality B() = N@ at level one. Explicitly

A2 Aex
B = 22“ - 2At +1, (11)
while
NO = (2 =m)(e; = m) (—8a? + 2¢® — 2em + 2m?).

€1€2(e2 — 4a?)
(12)

These quantities coincide provided (1) is suplemented
by

_ 92 _
m(e m),V:1+ m(m e).
€1€2 €1€2

Aext = (13)

The answer was computed with the help of ad hoc
triple conformal correlator with a non primary field [34].
As we already noticed this computation is non trivial
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because it involves the vertex #»3,; with two non-trivial
Young diagrams, see [34] for details.

3.2. The Second Level. The first non-trivial check of
AGT conjecture is at level two. We made this check and
there is indeed a complete coincidence between confor-
mal block and Nekrasov partition function holds at level
two, as already claimed in [11]. Unfortunately, the full
formula is too cumbersome to be presented here.

Instead in this paper we concentrate on additional
check, which can be extended to all levels:
tigate the limit of large m. According to (13) this is
the same as large Agyg, and what we need is a new as-
ymptotics: (15) Together with (14) this gives an insight:
only particular terms dominate in the limit.

4. Large Mass Behaviour. AGT relation is origi-
nally formulated for UV-finite gauge theories in 4d. As-
ymptotically free pure gauge theory arises when masses
of additional matter supermultiplets are led to infinity,
while the bare coupling z ~ ¢ is simultaneously led
to zero. In the case of adjoint multiplet the product
xm? = A* is kept constant in this scaling limit. We
know that if we have a large mass, we also have large
Aext-

With the aid of (13) one can obtain asymptotic be-
haviour of the first and the second order term of the
conformal block

we inves-

1 o Agxt _ A2 ~1
B m:)oo 2 AEXtQA ([1]a [1]) - (14)
B®) - = Aixthl ([12], [12]) . (15)

Substituting A in (14), (15) and (1) and generalizing
this formula we can guess that the large mass limit of B
looks like

lim B(z)= Y AMQR (17,07, (16)

zm2=A%*=const

We also have an explanation why this formula is cor-
rect. When one is studying high mass or in other no-
tations large Acy¢ limit, one should focuse only at the
term with the highest power of Aeyt, because of (13).

First of all we should describe how we evaluate B(™)

BW= 3 (LvWi |-y, V(0)) @5 (Y Y)).
|Y:|=|Y;|=n

(17)

One can see that @ depends only on A, so all Agyy de-
pendence is concentrated in y. We will prove a theorem
that the highest power of Aqy in

(L-v Vi [1e() Loy Va(0)) (18)
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is equal to the total number of Virasoro operators in Y;
and Yj. If this theorem is correct then the highest power
of Aext is in the term where Y; = Y; = [1"]. We also will
prove that the coefficient in front of the highest power of
Acxt in the scalar product for this term is equal to one.
Therefore the leading term in B(™ when Aeyt is large
indeed looks like: A2"Q " ([1™],[1™]).

5. Proof of the theorem. In this section we prove
that the highest order Aey in scalar product of three
fields (18) is equal to the total number of Virasoro oper-
ators in this scalar product. Also the coefficient in front
of this highest order term will be found.

Using relation (6) with n = 0 one can show that

(ML 0) = Bexe ([120)15(0)) . (19)

Here and below we use the notation Eext = Aeyxt +
+ (arbitrary function of A) and we can use Ay instead
of Agy because we are only interested in the highest
power of the Aeys term.

We can use the induction method to prove our state-
ment. So the base of induction is the zero level — if there
are no Virasoro operators then v does not depend on
Ayt because it is equal to one. Using (19) we can see
that two terms in the second row of (6) can be summed
directly and give us nAext along with lowering the num-
ber of the Virasoro operators in front of V3 by one.
From the Virasoro commutation relation we knowzthat
LiL_Vs = L_yLyVa + (n + k) Ly_nVa + 6, 1.
So if V3 is a primary field, as it is in our case, Ly L_y V3
is the sum of the fields with the same number of opera-
tors as L_y V3, and the coefficients of this sum depends
only on A. So the order of this term is lower than the
order of the second row in (6). The third row in our
case is equal to zero, because in our case V5 is always a
primary field.

So using previous statements one can see that reduc-
ing the number of the operators in front of V; gives us
multiplication by n&ext from the second row plus some
terms of the lower order, where n is the order of the
Virasoro operator which we expanded. And similarly
reduction of the number of operators in front of V3 also
give the nﬁext multiplier.

Therefore each time when one reduces the total num-
ber of operators in (18) by one he gains a product of
Zext, the function of A and the expression of similar
form but lower order. Also one can see that the coef-
ficient in front of the highest power of Aeyt in (18) is
equal to

IIHr»1II « (20)

L_,eY: L_4eY;

So we not only proved that the highest power is equal to
the total number of Virasoro operators but also counted
the coefficient in front of this term. And indeed this
coefficient is equal to one if ¥; = Y; = [1"].

6. Conclusion. We studied the large-mass limit of
the AGT relation for the N = 2 SYM theory with N, = 2
and adjoint matter multiplet. The corresponding limit
of the 1-point conformal block on a torus reproduces the
answer, obtained earlier by taking the similar limit of the
4-point tree conformal block, associated through AGT
relation with the 4d theory with Ny = 2, N, = 4 funda-
mental multiplets. The fact that the two limits coincide
is implied by AGT relation, but is somewhat non-trivial
from the point of view of CFT. Identity involves two very
different conformal blocks, and even the relevant triple
vertices are different in two cases: in toric case more so-
phisticated vertices with two Virasoro descendants are
needed. Thus we obtained one more non-trivial confir-
mation of the AGT conjecture.
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