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 2009 December 10Oscillator heating by the colored noiseP.V. Elyutin, N. S.Maslova, N.A.Gippius�+Moscow State University, Department. of Physics, 119991 Moscow, Russia�LASMEA, UMR 6602 CNRS, Universit�e Blaise Pascal, 63177 Aubi�ere, France+A.M.Prokhorov General Physics Institute RAS, 119991 Moscow, RussiaSubmitted 31 August 2009Resubmitted 28 October 2009The problem of energy kinetics of the harmonic oscillator under the in
uence of the colored noise is studiedin a novel approach that describes the evolution by a discrete time random walk with randomly varying step.In this approach the variations of the oscillator's energy on adjacent time intervals happen to be virtuallyuncorrelated even for large correlation times of the noise. The average time of the �rst passage of the oscillatorwith the initial zero energy across some threshold value is calculated. The pre-exponent factor of transitionrate is found to depend on the parameters of noise and not on oscillator damping and correctly describes thecase of zero friction. The agreement in exponential factors obtained by the suggested approach and kineticequation is demonstrated for narrow-band colored noise.PACS: 02.50.FzFor dynamical system with damping in
uenced bycolored noise the analysis of the average time of the �rstpassage through the particular energy state is of greatinterest. In order to understand the main features of
uctuation induced transitions for such systems the sim-plest models (e.g. harmonic oscillator) have to be inves-tigated. Some progress has been achieved in the inves-tigation of the exponential factor of the transition rate[1, 2]. However, the dependence of the pre-exponentialfactor on the system parameters and noise characteris-tics is much less understood.We study the evolution of the harmonic oscillator,m ��x+ 
 _x+ !2x� = F� (t) ; (1)where m is the particle mass, 
 is the damping coef-�cient, and ! is the oscillator's eigenfrequency, underthe in
uence of the colored noise F� (t). The randomprocess �(t) is assumed to be the normally distributed(gaussian) process with the exponential correlation func-tion, h� (t)i = 0; h� (t) � (t+ � )i = e��j� j; (2)where � is the rate of relaxation of the noise correla-tions. The force amplitude F is supposed to be suf-�ciently small. The term \energy" denotes the fullenergy of the unperturbed oscillator, that is E (t) == m _x2�2 +m!2x2�2.We intend to calculate the average time of the �rstpassage of the oscillator (with the initial zero value of theenergy) across the energy threshold E�. This problem is

a part of the description of the escape of the system (withone degree of freedom) from the metastable state underthe in
uence of the external noise. The paradigm of thetheory of this process was established by Kramers [3]through the expression for the rate of the escape acrossthe energy barrier of the height �E:� = C exp���EkT � ; (3)where the pre-exponential factor C has the dimension-ality of the inverse time. The temperature in en-ergy units kT is introduced through the autocorrela-tor of the perturbing force with white noise proper-ties, h� (t) � (t+ � )i = 2m
kT� (�). The problem of the�rst passage time was recently treated by Margolin andBarkai [4]. They have obtained the asymptotic formsof the distribution of times, but have not reached theexpression for the average time. Furthermore, these au-thors have restricted their study by the case of whitenoise.If the unperturbed motion of the oscillator is a har-monic motion with the amplitude A, x (t) = A sin!t,then the energy variation during one period of the un-perturbed motion T = 2�/! in the �rst order of theperturbation theory is�E = F! 2�/!Z0 A cos!t � (t) dt: (4)The autocorrelation function of variations of energy intwo motion periods with centers, separated by k peri-826 �¨±¼¬  ¢ ���� ²®¬ 90 ¢»¯. 11 { 12 2009



Oscillator heating by the colored noise 827ods, is given by B�E (k) = h�En�En+ki = F 2!2A2Jk,where the integrals Jk areJk = 2�/!Z0 dt1 �(k�1)(2�/!)Z�k(2�/!) dt2� (t1; t2) ; (5)� (t1; t2) = cos!t1 cos!t2e��jt1�t2j:The average square of the energy variations is propor-tional to the integral J0,J0 = 2��! (!2 + �2) ++ 2�2(!2 + �2)2 �exp��2��! �� 1� : (6)We introduce the dimensionless parameter � = 2��/!.For � � 1 (long noise correlations) J0 � �!�2, whereasfor � � 1 (short noise correlations) J0 � 4�2��1!�2.The direct calculation of J1 yields the expressionJ1 = �2(!2 + �2)2 �exp��2��! �� 1�2 ; (7)with asymptotics J1 � �4�2��1 �4!�2 for � � 1 andJ1 � �4�2��1 ��2!�2 for � � 1. The higher integralsdi�er from J1 only by the presence of the exponentialfactor: Jk�1 = J1e��(k�1): (8)Thus the random process of the energy variation in bothlimiting cases � � 1 and � � 1 can be seen as the super-position of a noncorrelated process with large intensityand a process of small intensity with exponential correla-tions, similar to that of the noise. We limit ourselves totreatment of the limiting cases; then the energy kineticscan be basically regarded as an uncorrelated process.The rate of the noise correlation decay � will discloseitself only in the typical magnitude of the energy varia-tions per period.The near absence of correlations of energy increments�E in consequent oscillation periods looks natural forshort noise correlations, but seems puzzling for the longones. To clarify the issue, let's consider a toy model, inwhich the force � remains constant for intervals of timemuch longer than the oscillation period T = 2�/!, andoccasionally changes instantaneously to a new constantvalue �0 = � + �F . Since the constant force does notchange the energy of the oscillator at all, the contribu-tions to the correlator of �E will come only from theperiods that contain jumps of �. If n is a period with ajump, then 
�E2n� / 
�F 2�, but h�En�En+1i � 0.

Apart from the energy change by the noise, ourmodel (1) includes the process of the energy dissipa-tion governed by the friction. For the su�ciently weakdamping during one period of the unperturbed motionthe oscillator changes its energy by�E = �mA2
!2 2�!Z0 cos2 !tdt = ��
 2�! �E: (9)We can describe the energy kinetics of the oscillatoras a random walk on the energy axis with discrete time(measured in the motion periods T ) and variable, ran-dom magnitude of the step on the energy axis, that isgoverned by the following mapping:En+1 = En �1� 
 2�! �+ Fr 2Enm!2' (�) �n; (10)where ' (�) = p� for � � 1 and ' (�) = 2��p� for� � 1, and �n is a noncorrelated random quantity withh�ni = 0, normalized by the condition 
�2n� = 1.To study the average time of the excitation of the os-cillator from the initial state with the zero energy to thegiven threshold energy E� it is convenient to introducethe variable z =pE/E�. Equation for the random walkon the axis of the reduced square root of the energy hasthe form zn+1 = zn (1� ") + ��n; (11)where " and � are the dimensionless parameters" = 
 �! ; � = F' (�)p2m!2E� : (12)It must be noted that Eqs. (10) and (11) lose theirvalidity for very small values of E and z correspond-ingly. Formally this loss is displayed by the possibilityof negative values of the right hand sides of the equa-tions. Physically this limitation origins in the failureof the perturbation theory that has been used for thecalculation of the energy variation in (4). However, thedomain of inapplicability is very small (E < �2E� orz < �), and modi�cation of the mappings in this rangepractically does not in
uence the global behavior of thesystem. In the numerical experiments we have used theEq. (11) in the form zn+1 = jzn (1� ") + ��nj. Thismodi�cation has a physical grounding, since the oscilla-tor with zero energy acquires for the �rst period T theenergy of the order �2E�, that agrees with the modi�edmapping.In the absence of damping (" = 0) the random walkis symmetric: the probabilities to move to higher (right)�¨±¼¬  ¢ ���� ²®¬ 90 ¢»¯. 11 { 12 2009



828 P.V.Elyutin, N. S.Maslova, N.A.Gippiusor lower (left) sides of the energy axis are equal. For thesymmetric random walk between the adjacent sites ona one-sided chain (with the re
ecting wall at the zerothsite), that starts on the zeroth site, the average time �0of the �rst passage across the site N � 1 is �0 = N2[5]. This result can be applied to our model by replac-ing the variable shift by a constant one, that equals tothe square averaged value �z =ph�z2i = �. Thus weobtain �0 = ��2: (13)The numerical calculation shows that this relation holdswith accuracy about 1% in the wide range of small valuesof �.In the presence of damping (" > 0) the random walkloses symmetry: from (11) it follows that the probabilityof increase of the energy (or z) is less than the proba-bility of its decrease. Obviously that increases the timeof the �rst passage through the threshold energy E�.We de�ne the lengthening factor L("; �) as the ratio ofthe average times of the �rst passage in the system withdamping and without it:L ("; �) = � ("; �)�0 : (14)For the random walk between adjacent sites on the one-sided chain, in which the probabilities of jumps formthe site j to the right (pj) and to the left (qj) are notequal, the average time of the �rst passage through thesite N by the walker that starts from the zeroth site, wascalculated by Murthy and Kehr [6]. It is given by theexpression� = N�1Xk=0 1pk + N�2Xk=0 1pk N�1Xi=k+1 iYj=k+1 qjpj : (15)Let's consider the case in which the probabilities dependon the numbers of sites linearly:pk = 12 � �N k; qk = 12 + �N k: (16)Then for the lengthening factor we obtain from (15)L (�N) � e2�N � 1� 2�N2 (�N)2 (17)We apply this result to the model (11). At every stepthe change in z consists of the symmetric random shiftwith magnitude �� and of the systematic negative shiftdue to relaxation that equals �"z. The probability P+

that the eventual shift will be positive is given by theexpressionP+ = 1Z"z��1 W� (x)dx = 1Z0 W� (x)dx� "z��1Z0 W� (x)dx;(18)where W� (x) is the distribution function of the randomquantity �. This distribution is an even function, there-fore the �rst integral equals 1=2. Since z � 1 and "� �,the function in the second integral can be replaced byW� (0). Thus we obtainP+ � 12 � "�zW� (0) : (19)From the comparison of this equation with the expres-sion for pk in (16) it can be seen that the asymmetricrandom walk (11) with variable steps can be approx-imated by the asymmetric random walk with steps ofthe constant length � with random signs, that is by themodel (16) with the parameter values� = "�W� (0) ; N = 1�: (20)The last expression agrees also with Eq. (13).The lengthening factor depends on the parameter�N , that is proportional to � = "��2.The following graph shows the dependence of thelogarithm of the lengthening factor, lnL, on the pa-rameter � for the normal (gaussian) distribution of �(W� (0) = 1�p2� = 0:399).It can be seen that it is a nonlinear function thatstarts with a linear asymptotic with a small inclinationand then approaches a linear dependence with the slopeabout three times steeper (cf. (17)).Our estimate of the rate of passage through the en-ergy threshold (� = ��1) has the form� = !2��2 exp (�#�) : (21)where # is a numerical constant about unity (from thenumerical calculations # = 0.83, see Figure). For themodel (1),(2) with the exponentially correlated noisewith short correlations (� � 1) we obtainkT = F 2m
� : (22)Eventually the exponential factor obtains the form of theKramers exponent (3) but with a numerical coe�cient#: � / exp (�#E�/kT ). We note that the numericalvalue of # is not universal: it depends on the W� (0),�¨±¼¬  ¢ ���� ²®¬ 90 ¢»¯. 11 { 12 2009
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kDependence of the logarithm of the lengthening factor L onthe parameter � = "��2, calculated from Eq. (14) (solidline) and obtained in the numerical experiment (solid cir-cles)and consequently depends on the form of the distribu-tion of �. Thus the energy kinetics under the in
uenceof coloured noise depends not only on the intensity ofnoise. On the other hand, the similarity between the ex-ponents in (3) and (21) is not trivial: by accepting Eq.(4), that is valid only for F � m!2A, we have excludedthe transition to the white noise limit, that is de�ned bythe limit � !1; F !1; F 2�� = const.In the opposite limit of long correlations (� � 1) thequantity in the exponent of (21) increases proportionallyto the correlation time of the noise �c = ��1 (cf. (2)).This dependence for the rate of transitions between equi-librium states of a bistable system under the in
uence ofthe colored noise was derived theoretically (by di�erentmethod) and con�rmed experimentally in [7].The exponential factor in (21) resembles the resultobtained from the kinetic equation of the Fokker-Plancktype modi�ed for coloured noise. For the harmonic os-cillator in the absence of the external driving force wecan rewrite kinetic equation obtained in [8 { 10] usingthe following relations.The oscillator energy E and coordinate x can be ex-pressed through the new variables a and a�:E = !aa�; x = 1pm! (a+ a�): (23)The equation of motion for a has the following form:_a = �i!a� "!a+ ~�F; (24)

where �pm! = ~� + ~��: (25)The probability distribution function P satis�es the ki-netic equation@@tP = @@E ("EP ) + @@E F 2m! ~D(E) @@E P; (26)where ~D(E) = (� + ")E! : (27)From this equation one can estimate the transition rate� � exp���'2(�)� + " �: (28)In this expression # in (21) is replaced by '2(�)=(�+")which is of the order of unity for "� � � 1.The pre-exponential factors in Kramers' theory de-pend on parameters of the potential of the unperturbedsystem and on the damping coe�cient 
. Our calcula-tion produces the pre-exponent that depends on the pa-rameters of noise, does not include 
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