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Oscillator heating by the colored noise

P. V. Elyutin, N. S. Maslova, N. A. Gippius**

Moscow State University, Department. of Physics, 119991 Moscow, Russia

*LASMEA, UMR 6602 CNRS, Université Blaise Pascal, 63177 Aubiére, France

+ A.M. Prokhorov General Physics Institute RAS, 119991 Moscow, Russia

Submitted 31 August 2009
Resubmitted 28 October 2009

The problem of energy kinetics of the harmonic oscillator under the influence of the colored noise is studied
in a novel approach that describes the evolution by a discrete time random walk with randomly varying step.
In this approach the variations of the oscillator’s energy on adjacent time intervals happen to be virtually
uncorrelated even for large correlation times of the noise. The average time of the first passage of the oscillator
with the initial zero energy across some threshold value is calculated. The pre-exponent factor of transition
rate is found to depend on the parameters of noise and not on oscillator damping and correctly describes the
case of zero friction. The agreement in exponential factors obtained by the suggested approach and kinetic

equation is demonstrated for narrow-band colored noise.

PACS: 02.50.Fz

For dynamical system with damping influenced by
colored noise the analysis of the average time of the first
passage through the particular energy state is of great
interest. In order to understand the main features of
fluctuation induced transitions for such systems the sim-
plest models (e.g. harmonic oscillator) have to be inves-
tigated. Some progress has been achieved in the inves-
tigation of the exponential factor of the transition rate
[1, 2]. However, the dependence of the pre-exponential
factor on the system parameters and noise characteris-
tics is much less understood.

We study the evolution of the harmonic oscillator,

m (& + & + w’z) = FE(t), (1)

where m is the particle mass, v is the damping coef-
ficient, and w is the oscillator’s eigenfrequency, under
the influence of the colored noise F¢(t). The random
process £(t) is assumed to be the normally distributed
(gaussian) process with the exponential correlation func-
tion,

€®)=0, (E@®EE+m)=el, (2)

where v is the rate of relaxation of the noise correla-
tions. The force amplitude F' is supposed to be suf-
ficiently small. The term “energy” denotes the full
energy of the unperturbed oscillator, that is E (t) =
= m:i:2/2 + mw2m2/2.

We intend to calculate the average time of the first
passage of the oscillator (with the initial zero value of the
energy) across the energy threshold E*. This problem is

a part of the description of the escape of the system (with
one degree of freedom) from the metastable state under
the influence of the external noise. The paradigm of the
theory of this process was established by Kramers [3]
through the expression for the rate of the escape across
the energy barrier of the height AE:

I— Cexp (%’?) , (3)

where the pre-exponential factor C' has the dimension-
ality of the inverse time. The temperature in en-
ergy units k7T is introduced through the autocorrela-
tor of the perturbing force with white noise proper-
ties, (€ (t) € (t+ 7)) = 2m~ykT§ (7). The problem of the
first passage time was recently treated by Margolin and
Barkai [4]. They have obtained the asymptotic forms
of the distribution of times, but have not reached the
expression for the average time. Furthermore, these au-
thors have restricted their study by the case of white
noise.

If the unperturbed motion of the oscillator is a har-
monic motion with the amplitude A, z () = Asinwt,
then the energy variation during one period of the un-
perturbed motion 7' = 27/w in the first order of the
perturbation theory is

27 /w
AE = Fu / Acoswt £ (£) dt. (a)
0

The autocorrelation function of variations of energy in
two motion periods with centers, separated by k peri-
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ods, is given by Bag (k) = (AE,AE, ) = F?w?A%J;,
where the integrals Jj, are

27 /w —(k-1)(27/w)
Jk = / dtl dt2<I) (tla t2) ) (5)
0 —k(2m/w)

® (t1,t2) = coswty cos wtae Vlti—tal,
The average square of the energy variations is propor-
tional to the integral Jy,

Jo = 2rv

+ 7@22:;)2 {eXp (—QZ—V> - 1} - (6)

We introduce the dimensionless parameter 8 = 27v/w.
For 3 < 1 (long noise correlations) Jy ~ Bw~2, whereas
for @ > 1 (short noise correlations) Jy ~ 4r23~tw=2.
The direct calculation of J; yields the expression

with asymptotics J; ~ (47r2)_1 B*w™2 for B <« 1 and
Ji ~ (47r2)_1 B72w™2 for B > 1. The higher integrals
differ from J; only by the presence of the exponential
factor:

szl = Jlei'a(kil). (8)

Thus the random process of the energy variation in both
limiting cases 3 < 1 and 8 > 1 can be seen as the super-
position of a noncorrelated process with large intensity
and a process of small intensity with exponential correla-
tions, similar to that of the noise. We limit ourselves to
treatment of the limiting cases; then the energy kinetics
can be basically regarded as an uncorrelated process.
The rate of the noise correlation decay v will disclose
itself only in the typical magnitude of the energy varia-
tions per period.

The near absence of correlations of energy increments
AE in consequent oscillation periods looks natural for
short noise correlations, but seems puzzling for the long
ones. To clarify the issue, let’s consider a toy model, in
which the force £ remains constant for intervals of time
much longer than the oscillation period T' = 27 /w, and
occasionally changes instantaneously to a new constant
value &' = £ + AF. Since the constant force does not
change the energy of the oscillator at all, the contribu-
tions to the correlator of AE will come only from the
periods that contain jumps of £. If n is a period with a
jump, then (AEZ) o« (AF?), but (AE,AE, ;1) ~ 0.
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Apart from the energy change by the noise, our
model (1) includes the process of the energy dissipa-
tion governed by the friction. For the sufficiently weak
damping during one period of the unperturbed motion
the oscillator changes its energy by

2m
w

6E = —mA*yw? / cos? wtdt = — (*y%)E (9)

We can describe the energy kinetics of the oscillator
as a random walk on the energy axis with discrete time
(measured in the motion periods T') and variable, ran-
dom magnitude of the step on the energy axis, that is
governed by the following mapping:

2T 2F,
Eni1=E, (1 - 7:) +F 2’ (B) &, (10)

where ¢ (8) = /B for B < 1 and ¢ (8) = 2m/+/B for

B> 1, and &, is a noncorrelated random quantity with
(€n) = 0, normalized by the condition (£2) = 1.

To study the average time of the excitation of the os-
cillator from the initial state with the zero energy to the
given threshold energy E* it is convenient to introduce
the variable z = \/E/E*. Equation for the random walk
on the axis of the reduced square root of the energy has
the form

Znt1 = 2 (1 =€) + pép, (11)
where € and p are the dimensionless parameters

c=qt,  u=—20 (12)
w V2mw? E*
It must be noted that Egs. (10) and (11) lose their
validity for very small values of F and z correspond-
ingly. Formally this loss is displayed by the possibility
of negative values of the right hand sides of the equa-
tions. Physically this limitation origins in the failure
of the perturbation theory that has been used for the
calculation of the energy variation in (4). However, the
domain of inapplicability is very small (E < u2E* or
z < ), and modification of the mappings in this range
practically does not influence the global behavior of the
system. In the numerical experiments we have used the
Eq. (11) in the form 2,41 = |2, (1 — &) + u&n|- This
modification has a physical grounding, since the oscilla-
tor with zero energy acquires for the first period T the
energy of the order u?E*, that agrees with the modified
mapping.
In the absence of damping (¢ = 0) the random walk
is symmetric: the probabilities to move to higher (right)
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or lower (left) sides of the energy axis are equal. For the
symmetric random walk between the adjacent sites on
a one-sided chain (with the reflecting wall at the zeroth
site), that starts on the zeroth site, the average time ©¢
of the first passage across the site N > 1 is @9 = N2
[6]. This result can be applied to our model by replac-
ing the variable shift by a constant one, that equals to
the square averaged value Az = 1/(Az2) = u. Thus we
obtain

Qo = p~>. (13)

The numerical calculation shows that this relation holds
with accuracy about 1% in the wide range of small values
of u.

In the presence of damping (¢ > 0) the random walk
loses symmetry: from (11) it follows that the probability
of increase of the energy (or z) is less than the proba-
bility of its decrease. Obviously that increases the time
of the first passage through the threshold energy E*.
We define the lengthening factor L(e, u) as the ratio of
the average times of the first passage in the system with
damping and without it:

O (e, 1)
0

L(e,p) = (14)
For the random walk between adjacent sites on the one-
sided chain, in which the probabilities of jumps form
the site j to the right (p;) and to the left (g;) are not
equal, the average time of the first passage through the
site NV by the walker that starts from the zeroth site, was
calculated by Murthy and Kehr [6]. It is given by the
expression

SIS S § A

I8

1 1
2 Dk ki

Let’s consider the case in which the probabilities depend
on the numbers of sites linearly:

A 1 A

DN | =

Pr =

Then for the lengthening factor we obtain from (15)

2AN _ 1 _9AN

2(AN)?

e

Q

L(AN) (17)

We apply this result to the model (11). At every step
the change in z consists of the symmetric random shift
with magnitude p€ and of the systematic negative shift
due to relaxation that equals —ez. The probability P,

that the eventual shift will be positive is given by the
expression

1

/ We (2 / We (z)dz — 57_ We (z)dz,
- 0 (18)

where W¢ () is the distribution function of the random
quantity & This distribution is an even function, there-
fore the first integral equals 1/2. Since z < 1 and € < p,
the function in the second integral can be replaced by
We (0). Thus we obtain

1 €
P~ - — —2W¢(0). 19
%y = W (0) (19)

From the comparison of this equation with the expres-
sion for p; in (16) it can be seen that the asymmetric
random walk (11) with variable steps can be approx-
imated by the asymmetric random walk with steps of
the constant length p with random signs, that is by the
model (16) with the parameter values

A=Sw.0), w~N=1 (20)

po w

The last expression agrees also with Eq. (13).

The lengthening factor depends on the parameter
AN, that is proportional to x = eu™2.

The following graph shows the dependence of the
logarithm of the lengthening factor, In L, on the pa-
rameter k for the normal (gaussian) distribution of £

0) = 1/v/2r = 0.399).

It can be seen that it is a nonlinear function that
starts with a linear asymptotic with a small inclination
and then approaches a linear dependence with the slope
about three times steeper (cf. (17)).

Our estimate of the rate of passage through the en-
ergy threshold (IT' = ©®~!) has the form

[ = 224 exp (—#r). (21)
Y[y

where # is a numerical constant about unity (from the
numerical calculations # = 0.83, see Figure). For the
model (1),(2) with the exponentially correlated noise
with short correlations (3 > 1) we obtain

F2

kT = .
myv

(22)

Eventually the exponential factor obtains the form of the
Kramers exponent (3) but with a numerical coefficient
#: T o« exp (—#E*/kT). We note that the numerical
value of # is not universal: it depends on the W¢ (0),
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i #

Dependence of the logarithm of the lengthening factor L on
the parameter k = eu™2, calculated from Eq. (14) (solid
line) and obtained in the numerical experiment (solid cir-
cles)

and consequently depends on the form of the distribu-
tion of £&. Thus the energy kinetics under the influence
of coloured noise depends not only on the intensity of
noise. On the other hand, the similarity between the ex-
ponents in (3) and (21) is not trivial: by accepting Eq.
(4), that is valid only for F < mw?A, we have excluded
the transition to the white noise limit, that is defined by
the limit v — oo, F — oo, F? /v = const.

In the opposite limit of long correlations (3 < 1) the
quantity in the exponent of (21) increases proportionally
to the correlation time of the noise 7. = v=1 (cf. (2)).
This dependence for the rate of transitions between equi-
librium states of a bistable system under the influence of
the colored noise was derived theoretically (by different
method) and confirmed experimentally in [7].

The exponential factor in (21) resembles the result
obtained from the kinetic equation of the Fokker-Planck
type modified for coloured noise. For the harmonic os-
cillator in the absence of the external driving force we
can rewrite kinetic equation obtained in [8-10] using
the following relations.

The oscillator energy E and coordinate x can be ex-
pressed through the new variables a and a*:

1
vmw

The equation of motion for a has the following form:

E =waa*, z= (a +a). (23)

4 = —iwa — ewa + EF, (24)

Mucema B AKIT® Tom 90 BeIm. 11-12 2009

where

5 pe %
— = . 25
The probability distribution function P satisfies the ki-
netic equation

0 0 o F? . 0

where

DE) =@ +e)”

w .

(27)

From this equation one can estimate the transition rate
Kp? (ﬂ)]
B+e

T’ ~ exp [— (28)
In this expression # in (21) is replaced by ©?(3)/(3+¢)
which is of the order of unity for ¢ < 8 < 1.

The pre-exponential factors in Kramers’ theory de-
pend on parameters of the potential of the unperturbed
system and on the damping coefficient y. Our calcula-
tion produces the pre-exponent that depends on the pa-
rameters of noise, does not include 7 at all and correctly
describes the case of zero friction.
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