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Two off-channel nonlinear defects coupled to the photonic waveguide constitute the Fabry-Perot interfer-
ometer (FPR). The defects are made from a Kerr-like nonlinear material. For the linear case such a FPR can
support the bound states in the form of standing waves between the defects if the distance between them is
quantized. For the nonlinear case the bound states appear for arbitrary distance between the defects however
for an quantized electromagnetic intensity. For the transmission through FPR we reveal new resonances and
show these are a result of coupling of the bound states with incident wave because of nonlinearity of the defects.
The resonances are spaced at the eigen frequencies of bound states.

PACS: 05.60.Gg, 41.20.Jb, 42.65.Wi, 42.70.Qs, 42.79.Gn

1. Introduction. The Fabry-Perot resonator (FPR)
consists of two plane mirrors at the distance L and di-
electric media with the refractive index n between as
shown in Fig.la. Then the transmission through the
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Fig.1. (a) A view of transmission through the Fabry-Perot
resonator filled by nonlinear media [1]. (b) Photonic crys-
tal consists of a square lattice of dielectric rods. A single
row of rods is extracted to form one-dimensional directed
waveguide. Two nonlinear defect rods marked by filled
circles are inserted near the waveguide. (c) The model

Fan et al. [3] which describes the real PC structure shown
in (b)

FPR can be easily found as geometric sum of conse-
quent transmissions and reflections through each mirror
specified by ¢; and r; respectively

‘o t2 exp(ikL)

= 1
1 —r? exp(2ikL)’ (1)

where k = wn/c is the wave number in a media with
the refraction index n between mirrors. For metallic
perfect mirrors in optical region of frequencies one can
disregard the dependence of the reflection 71 = 1 on the
frequency to obtain that the bound state which does not
leaks through the mirrors arises at kL = mm. We refer
the reader to [1] for more details of this phenomenon in
the FPR. Therefore, the underlying mechanism of the
bound states in the FPR is (i) perfect reflections at mir-
rors and (ii) the integer number of the half waves are to
be spaced between mirrors.

This FPR approach, exclusively transparent, was
applied to photonic crystal (PC) structure with one
and two waveguides coupled with two off-channel single-
mode cavities [2—-7] (see Fig.1b,c), to typical one-
dimensional double-barrier structure with temporally
periodically driven potential of barrier [8] and two iden-
tical quantum dots connected by wire [9-11]. The
bound states whose frequencies are in a propagation
band of the waveguide can be classified as the bound
states in continuum (BSC) [12, 13]. There are also
bound states of the defects with eigen frequency wy.
However because of coupling of the defects with the
waveguide they become extended. While the BSC has no
coupling with continuum (waveguide) [14, 15] and there-
fore can not be excited by transmitted wave [16] in linear
systems. It can be traced by narrowing of the resonance
width for approaching to the BSC point [17—-19].

The reader is reminded that a photonic crystal is a
periodic array of dielectric media [20] having electro-
magnetic modes that are Bloch waves with a frequency
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spectrum separated into a series of pass and stop bands.
We consider a square array of parallel, infinitely long
high dielectric rods in air. The removal of a row of rods
breaks the periodicity in one spatial direction. If the pa-
rameters of the crystal are such that there is a complete
band gap for wave vectors perpendicular to the rods,
then this defect can introduce modes that decay expo-
nentially away from the defect but can still be described
by a wave vector pointing along the missing row of rods.
Such a row a defects acts like a waveguide [20] with a
spectrum shown in Fig.2.
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Fig.2. PC is a square lattice of dielectric rods (e = 11.56) of
radius 0.18a in air where a is the period. One row of rods
is extracted from the PC. The dispersion relation of the
propagating guided TM mode is shown by solid line [22]

Next, following [3, 4, 6] we introduce two planar-
photonic crystal nanocavities (defects) which are spaced
aside from the waveguide as shown in Fig.1b by chang-
ing the dielectric constant of defect’s material. Each
cavity supports a localized single degenerate monopole
solution for the TM modes, which has the electric field
component parallel to the cylinders [21, 22]. Then each
off-channel defect gives rise to the interference of electro-
magnetic waves flowing over the waveguide and through
the off-channel defect, i.e., to the Fano resonance. It re-
sults in zero transmission at the defect’s eigen frequency
wyp [4, 23] provided that this frequency belongs to propa-
gation band of the waveguide. Therefore the off-channel
defects may serve as perfect mirrors however only at the
frequency w = wg. Then the bound state with the eigen
frequency w, = wo might appear between the off-channel
defects if the equation

ri(wo) =1, 0 = k(wo)L = mm (2)
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is fulfilled. It can be done provided that the distance L
between defects is quantized. Thus, for the linear sys-
tems the phenomenon of formation of the BSC is rather
subtle one.

Principally new possibility was found first by Mar-
burger and Felber [24] in the FPR filled by a Kerr-
medium, whose refractive index depends on intensity of
light as shown in Fig.la: n = ng + n2I. In the frame-
work of one-dimensional nonlinear Maxwell equations
they has shown that the transmission becomes multi-
ple valued as dependent on the incident intensity to
give rise respectively to a bistability. This approach
was developed in many publications (see in particular,
the reference list in [1]). Here we consider a different
scheme based on the off-channel defects made from a
Kerr medium shown in Fig.1b,c while a medium be-
tween defects is linear. We can refer this system as the
FPR with nonlinear mirrors. The photonic FPR with
nonlinear mirrors also displays the bistability properties.
However our main aim is to demonstrate new resonances
of very peculiar shape. We argue these are fingerprints
of series of the BSCs which become to be coupled with
incident wave via the nonlinearity of mirrors of the FPR.

2. Basic equations. The single nonlinear impurity
embedded in a one-dimensional continuum attracted in-
terest long time ago because of analytical treatment and
its generality [23,25—27]. The system is open and differs
from closed nonlinear one by that the transmission res-
onance properties depend on the frequency of incident
wave and its amplitude both. The main result is that
the transmission coefficient of a single waveguide mode
scattering from Kerr off-channel features was shown to
exhibit bistability properties arising from the nonlinear-
ity of the off-channel defect. The frequency of isolated
bound mode for the single isolated defect cylinder de-
creases monotonously with growth of its dielectric con-
stant €4 [22, 7]. Therefore the mode frequency of the
defects enumerated by 7 = 1,2 for the radius much less
than the EM wave length undergoes shift

wj = wo + A|E;|* 3)

because of the Kerr effect [26]. The transmission
through each defect has zero (resonance dip) at these
eigen frequencies [23]. In order to the defects were per-
fect mirrors we are to take the transmission zeros of both
defects occur at the same frequency

We = wo + AX, = wo + \Yy, (4)

where X = |E;|?, Y = |E|? are intensities of electro-
magnetic wave at the first and second defects (mirrors)
respectively. This equation relates intensities at the de-
fects equaled: X, = Y.. The condition for the BSCs (2)
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between nonlinear mirrors give us the next equation for
the intensity X,:

k(wo + AX.)L & k(wo)L + vy (ko) AX,L = mm,  (5)

where k is the wave number of the electromagnetic wave
propagated along the waveguide which is function of the
frequency w as shown in Fig.2. For the linear case A =0
this equation can be fulfilled only by tuning of the dis-
tance L between mirrors. However for the nonlinear de-
fects there might be a new possibility to tune the light
intensities at the defects.

The transmission of TM modes in linear PC
structures is equivalent to quantum transmission [20].
Thereby basic equations for the transmission in the PC
structures can be derived from the Lippman-Schwinger
equation [3, 4], from the coupled-mode theory [2, 5, 20],
or one can explore the tight-binding models [23] with
further continual limit ka < 1. In the present letter we
use the second approach of the temporal couple-mode
theory. We start with case of single off-channel defect
coupled with the single waveguide. Let a monochro-
matic wave E;,e ! incidents at the left. Then we can
write for the defect amplitude

. 2 2 .
E=—iweE - =E+ \/jEme_'“t. (6)
T T

This equation has simple physical meaning. Because of
coupling of the defect mode with the waveguide it leaks
into there with the decay time 7. Simultaneously owing
to the same coupling the source in the form of incident
wave in the right hand of Eq. (8) supports the defect
mode. For defect with the Kerr nonlinearity (3) we can
substitute the time dependence as E(t) = Fe~*! and
present Eq. (6) as follows

(w — wo +iT)E = iVT E;y,. (7)

Further we can write for the transmission amplitude
with account of interference of direct path over the
waveguide and the path through the off-channel defect

%E. (8)

ty = Ezn -

The reflection amplitude equals r; = —\/Z/_TE. One
can see that for E = 0 there is no reflection, and
|r1|*> + |t1> = EZ,. The transmission for single linear
off-channel defect is shown in Fig.3 by dashed line. The
case of single nonlinear off-channel defect was consid-
ered on [23]. One can see that the single defect has zero
transmission, i.e. perfect reflection at w = wp.
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Fig.3. The transmission in the linear FPR described by
the coupled-mode equation (9) for wo = 0, ' =1, 8 =
= 0.77 + mw (solid line). By dashed line the transmission
in the waveguide coupled with the single off-channel defect
with the parameters wo = 0,I' = 1 is shown

Now we can easily write the coupled-mode theory
equations for the case of two defects separated by dis-
tance L with corresponding amplitudes F; and E, (see,
for example, [5]):

(w — wy 4 i0)Ey + i€ By = iv/TE;y,
iTe® By + (w — wy + i0) By = ivV/Te? By, (9)
and the transmission amplitude
t = Eine® — VTE e — VTE,, (10)

where § = k(w)L represents the phase shift incurred as
the waveguide mode travels from the first defect to the
second one. From (9) we obtain

iVP[@ + e + il (1 — €2¥))

B = e roms - — ey’
where
&:w—%:w—wo+%(X+Y),
e:%:%(X—Y), (12)

the value P = T'|E;,|? is proportional to the input wave
power. Substituting (11) into (12) we obtain the nonlin-
ear self-consistent equations for EM intensities X and
Y at each defect
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X[(@* — €% — 2I'?sin? )% + I'?(2@ 4 I'sin 26)?] =
= P[(@ + € + I'sin26)% + I'?sin* 4,
Y[(@* — € — 2T sin? 0) + T'? (2@ — sin 26)%] =
= P(@ —€)?,

(13)

which is the system of nonlinear algebraic self-consistent
equations via Eqgs. (12).

3. Resonances at bound states in continuum.
The solution of Eq. (9) is given by the inverse of the left
matrix in (9). However there might be the special case
when the inverse does not exist for the determinant of
the matrix equaled to zero

@? — > —2I'sin? 0 = 0,
w = —TI'sinf cosf
at the points

y Om = mm. (14)

1
I
=

e =0,

After substitution notations (12) and § = kL one can see
easily that Eq. (14) is equivalent to Eqs. (4), (5). At
the point (14) the solution of Eq. (9) is E; + Ezei®= =0
and exists for zero incident wave FE;, = 0. Therefore
the homogeneous solution is localized at the defects and
corresponds to the BSC [28, 15].

The dispersion relation shown of the propagat-
ing guided mode shown in Fig.2 for photonic crystal
waveguide has complicated form and can be calculated
only numerically [22]. However near the resonance fre-
quencies of the defects one can use the linear approxi-
mation and write for the phase shift

O(w) =6 + b1w. (15)

The intensities of BSCs at the defects are coincided
X, =Y,. Then Eq. (4) gives us X, = (w. — wo)/A.
Substituting (15) and this equality into (5) we obtain

mm — g

X =
cm )\01

(16)
Thus the FPR with nonlinear mirrors can capture elec-
tromagnetic wave irrespective to the distance between
mirrors if the intensity of the wave is quantized at the
defects. The transmission and the intensities were com-
puted numerically for small incident amplitude E;, =
0.1 and presented in Figs.4 and 5 respectively. A part
of the transmission which is very close to the linear case
(Fig.3) is shown by dashed line in Fig.4a. However a
nonlinearity of the defects gives rise to a new series of
a picket-fence like resonances, and each resonance has
rather complicated shape as shown in Fig.4b. To be spe-
cific we took A = 0.2, wg = 0, g = 0.7m, 0, = . If to
2009
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Fig.4. (a) Transmission spectra as dependent on frequency
in the FPR given by Eq. (9) for the nonlinear case
A = 0.2. The parameters of the FPR are wo =0, ' = 1,
# = 0.7 + mw, E;, = 0.1. Dash line shows those part
of the transmission which is close to that for the linear
FPR shown in Fig.3 for small E;,, solid line does the
transmission features induced by BSCs (BSC resonances).
(b) Blowup of the BSC resonance for the BSC frequency
equaled to 1.3

substitute these values into Eq. (16) we obtain that the
BSC frequencies equal 0.3+ n = 0.3, 1.3, 2.3, ... and
the intensities do 5(0.3 + m) = 1.5, 6.5, 11.5, ... . One
can see that these values exactly agree with the positions
of new resonances in Fig.4 and corresponding intensities
shown in Fig.5.

The definition of the BSCs as localized (square in-
tegrable) ones is equivalent to that they have zero res-
onance width [15]. The resonance positions and reso-
nance widths are given the complex eigen values of the
effective Hamiltonian [29] which is the left hand matrix
in (9):

w1 + wa

np=—5— il + /€2 — T2 exp(2i6). (17)
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Fig.5. (a) The general solution of Eq. (13) for the parame-
ters given in Fig.4. (b) Color online. Blow up of solutions
near the BSC frequency w, = 1.3: X (blue line) and Y
(red line)

From where we obtain that at the point (14) one reso-
nance becomes infinitely narrow (Im(z1) = 0) while the
the second one acquires the maximal width 2T" [3, 5, 6].
The last resonance behavior is illustrated in Fig.6.
Therefore the point (14) is the BSC, indeed. At this
point there is the homogeneous solution of the coupled

S )=(a)

This solution is localized at the impurity states. As
known from linear algebra [30] the necessary and suffi-
cient condition for the existence of the inhomogeneous
solution of Eq. (9) for ¢, # 0 is that the left vector
(BSC| = (1 — e¥=) = (1 F 1) is to be orthogonal to the
incoming vector (1e?=) = (1 +1). It holds indeed for
the linear case. Then the general solution of Eq. (9) at
the BSC point can be given [16]

mode equation (9) |[BSC) =

[4) = alBSC) + By, ( o ) L)

4
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Fig.6. Color online. The frequency behavior of complex
eigen values |z1,2 — w| (17) zero of which gives the BSC in
the nonlinear FPR,

where « is an arbitrary coefficient and the second term
is the particular transport solution of Eq. (9). The or-
thogonality of the BSC to incoming wave vector implies
that the BSC state is not coupled to the continuum and
therefore there can not be a resonance at its discrete
frequency w. given by (4).

However that is not the case for the nonlinear FPR.
The nonlinearity violates the linear superposition (18).
As the result a coupling between the BSC and incoming
wave appears because of nonlinearity. Therefore the in-
coming wave excites the BSC. Moreover the BSC exists
in a whole range of the length L between the nonlinear
mirrors. Numerics indeed shows completely new type
of resonances for the nonlinear FBR as shown in Fig.2.
One can see that the positions of these resonances are
in full agreement with formulas (5).

In conclusion let us compare the FPR with nonlin-
ear media between linear mirrors considered by Mar-
burger and Felber and the present FPR with nonlinear
off-channel defects. In both types of the nonlinear FPRs
the transmission is multiple valued as the function of
the frequency or incident intensity. However the former
FPR supports bound state in continuum only if the mir-
ror is perfect, i.e. the reflectance equals unit. In that
view the FPR filled my nonlinear media is similar to
the linear FPRs [2-7]. In the FPR considered in the
present letter the nonlinear off-channel defects self in-
duce the transmission zeroes at whole discrete sequence
of the light intensity to give rise to a corresponding se-
quence of bound states between the off-channel nonlin-
ear defects. Moreover these solutions exist for E;, = 0,
that determines them as the bound states in continuum
(BSC). On the other hand, the nonlinearity of the off-
channel defects provides a coupling of incident wave with
the BSCs to cause new resonances at their eigen fre-
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qu

encies. Moreover as seen in Fig.4 the FPR might be

transparent in the vicinity of these resonances. In con-
clusion we note that the results presented here can be
considered as a special case of the two-level nonlinear
Fano-Anderson model [31].
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