
Pis'ma v ZhETF, vol. 91, iss. 3, pp. 121 { 125 c 2010 February 10Dirac fermions on a disclinated exible surfaceE.A.Kochetov1), V.A.Osipov1)Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, RussiaSubmitted 15 December 2009A self-consisting gauge-theory approach to describe Dirac fermions on exible surfaces with a disclinationis formulated. The elastic surfaces are considered as embeddings into R3 and a disclination is incorporatedthrough a topologically nontrivial gauge �eld of the local SO(3) group which generates the metric with conicalsingularity. A smoothing of the conical singularity on exible surfaces is naturally accounted for by regardingthe upper half of two-sheet hyperboloid as an elasticity-induced embedding. The availability of the zero-modesolution to the Dirac equation is analyzed.I. Introduction. Is is now generally accepted thatthe low-lying electronic states in graphene can be ac-curately described by two-dimensional massless Diracfermions [1]. In experiment, multiform graphene struc-tures were observed thus stimulating studies of Diracfermions on curved graphene sheets (see, e.g., [2, 3]).This problem is markedly complicated when the curva-ture itself is generated by topological defects like discli-nations. Indeed, a disclination is known in elasticitytheory as a line defect which can be produced by \cutand glue" Volterra process, namely, by inserting or re-moving a wedge of material with the following gluingof the dihedral sides. This immediately generates addi-tional large elastic strains inside the crystal. For exiblemembranes, however, there is a chance to screen out thestrain �eld by buckling into a cone. The problem thusreduces to coupling Dirac spinors to a topologically non-trivial curved background.According to Volterra process disclination can beconsidered as a conical singularity like strings in cosmol-ogy. The relevant background is the curved spacetimewhere all the curvature is concentrated at the apex of thecone. The metric of this 2D space in polar coordinatesis written as ds2 = dr2 + �2r2d'2: (1)Here the parameter � is related to the angular sector thatis removed or inserted to form the defect. In this case,any attempt to build a closed loop around the discli-nation line will result in a closure failure. The de�citangle is equal to 2�� with � = 1 � � where � is theFrank index, the basic topological characteristic of thedisclination. The positive sign of � corresponds to theremoving of a sector. In this case the space has posi-tive curvature. Correspondingly, for negative � one has1)e-mail: kochetov@theor.jinr.ru, osipov@theor.jinr.ru

a cone of negative curvature. Eventually, the problemreduces to a Dirac equation in the curved spacetime.In spite of the elegant form of this approach, there isyet an important open question concerning the so-calledcore region of the defect. To the best of our knowledge,for the �rst time this problem was raised in cosmologicalmodels [4, 5] where long-range e�ects of cosmic stringcores were studied. In geometric theory of defects, aninuence of a disclination core on the localization of elec-trons and holes was investigated in [6]. In both cases, thetip of the conical singularity is replaced by a smooth capwhile at large distances a typical cone with the de�cit an-gle 2�� emerges. In cosmological models the curvatureof an in�nite strait string is con�ned within a cylinder ofa small radius a (the core radius) that possesses a directphysical meaning: it characterizes the interior structureof the string. Accordingly, the relevant metric can betaken in the formds2 = dt2 + dz2 + P 2(r=a)dr2 + r2d'2; (2)where the range of the angular coordinate is ' 2 [0; 2��)and P (r=a) is a smooth monotonic function satisfyingthe conditionslimr=a!0P (r=a) = �; P (r=a) = 1; r > a: (3)For example, in [6] the so-called ower-pot model wasconsidered when the curvature of the disclinated mediais concentrated on a ring of radius a, which results inthe formation of a "seam" on the cylinder.It should be stressed that this approach is of interestin the description of linear defects with a certain interiorstructure (�nite thickness of a string). However, the sit-uation changes drastically for a disclination on an elastic2D surface. First of all, in this case there is no parame-ter (similar to a) that �xes a relevant short-range lengthscale: a disclination is a point defect. Second, the speci-�city of 2D elastic surfaces lies in that they may change�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 3 { 4 2010 121



122 E.A.Kochetov, V.A.Osipovboth their intrinsic and extrinsic geometries. For ex-ample, the creation of a disclination in a nonstretchablemembrane by using the \cut and glue" process will resultin a true cone. In reality, however, the membranes areexible and the cone apex will be smoothed due to �niteelasticity. Elastic deformations are by de�nition smoothdeformations. A cone cannot be smoothly evolved into adesired surface with a smoothed apex simply because ofthe fact that a cone is not a manifold. If one ignores thisand just try to formally carry over the P -type smearingprocedure used for strings to elastisity theory, one willinevitably run into a problem of �xing boundary condi-tions at r = a. In the present case those conditions arepurely arti�cial and possess no direct physical meaning(see also discussion in [7]). In other words, it is nota straightforward matter to incorporate self-consistentlythe information about the core region within the geomet-rical approach in 2D elastic theory with defects.In this paper, we attempt to develop a variant of theself-consistent gauge-theory approach to take into ac-count both the smoothed apex and the topological char-acteristic of the defect. Actually, a part of our programwas already realized in [8]. The model developed thereallows us to describe disclinations on arbitrary elasticsurfaces. It includes Riemannian surfaces that maychange their geometry under deformations. The localgauge �eld to describe disclinations on an elastic sur-face emerges as a gauge �eld of the local SO(3) groupof the local rotations of R3. This ensures the local rota-tional invariance of the elasticity action. In spite of thefact that we consider 2D manifolds, the group SO(3) ap-pears rather than the SO(2) one because of the fact thatwe formulate our theory in terms of the embeddings ofa 2D surface into R3. By construction the local gauge�eld a�ects the underlying metric. Within the linearscheme the model recovers the von Karman equationsfor membranes with a disclination-induced source beinggenerated by gauge �elds. For a single disclination onan arbitrary surface a covariant generalization of theseequations is obtained.The dynamical variables of our theory are the embed-dings Ri(x1; x2) and gauge �elds W i� to be determinedself-consistently (indices �; �; :: = 1; 2 are tangent to thesurface, whereas i; j; :: = 1; 2; 3 run over the basis of R3).As the outcome, the induced metricg��(W ) = r�Rr�R; r� = @� + [W�; :::]emerges. Explicitly,g��(W ) = @�R � @�R+ @�R[W� ;R] + @�R[W�;R] ++ (W�W�)R2 � (W�R)(W�R): (4)

In general, the dynamical �elds Ri and W ia couple toeach other. However, in the linear in elastic �eld approx-imation the gauge �eld can be considered as an external�eld [8].II. Dirac fermions on a manifold with a dy-namically induced metric. The important issue ishow a non-trivial gauge potential can explicitly be in-corporated into the theory to self-consistently describedisclination defects on an elastic surface with fermi-ons. To incorporate Dirac fermions we observe that thetopologically nontrivial gauge �eld reasserts itself in theDirac equation as a topologically nontrivial SO(2) pieceof the spin connection [9]. That part of the connectioncarries a topologically nontrivial ux that does not de-pend on smooth continuous changes of the underlyingmetric due to small elastic deformations.To incorporate fermions on the 2D curved back-ground (�; g��(W )) we need a set of orthonormal framesfe�(W )g which yield the same metric, g��(W ), relatedto each other by the local SO(2) rotation,e� ! e0� = ���e� ; ��� 2 SO(2):It then follows that g�� = e��e����� where e�� is thezweibein, with the orthonormal frame indices being�; � = f1; 2g, and coordinate indices �; � = f1; 2g (fromnow on we drop an explicit W -dependance of the met-ric). As usual, to ensure that physical observables be in-dependent of a particular choice of the zweinbein �elds,a local so(2){valued gauge �eld !� is to be introduced.The gauge �eld of the local SO(2) group is referred to asa spin connection. For the theory to be self-consistent,zweinbein �elds must be chosen to be covariantly con-stant [10]: @�e�� � ����e�� + (!�)��e�� = 0;which determines the spin connection coe�cients explic-itly (!�)�� = e��D�e�� ; D� = @� + ��; (5)with �� being the Levi-Civita connection. The Diracequation on a surface (�; g��(W )) is written asi�e �� (@� +
�) = E ; (6)with 
� = 18!� �� [�; � ] (7)being the spin connection in the spinor representation.Let us consider �rst a plane which can be bent butcan not be stretched. A single disclination can be in-serted in this plane by using the \cut and glue" Volterra�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 3 { 4 2010



Dirac fermions on a disclinated exible surface 123process. Obviously, the resulting surface is nothing elsebut a cone. In our description, we start from a 2D atmetric disturbed by a disclination defect.In the polar coordinates (r; ') 2 R2 a plane can beregarded as an embedding(r; ')! (r cos'; r sin'; 0); 0 < r < 1; 0 � ' < 2�:The disclination defect is placed at the origin and is de-scribed by the gauge �eld W i=1;2� = 0 and W i=3� =W�,where in the polar coordinates [8]Wr = 0; W' = �: (8)Notice that for any counter C encircling the originone has ICW = 2�� 6= 0: (9)Since the counter integral in (9) is a gauge invariantquantity, the �eld W� cannot be gauged away to zerodue to the topological obstruction. This is why that�eld is referred to as a topologically non-trivial one.A physically observable quantity associated with thatgauge �eld is a nonzero ux, � = 2��, through an areabounded by the counter C. It does not depend on smallcontinuous deformations of that area. This ux insteadcharacterizes the gauge potential globally: it determinesthe �rst Chern characteristic class the gauge potentialW belongs to. An electron encircling the origin natu-rally acquires a topological phase associated with thatnontrivial ux: the Aharonov-Bohm phase which distin-guishes the gauge potential W from a trivial one.The components of the induced metric (4) can beeasily read o�grr = 1; g'' = �2r2; gr' = g'r = 0; (10)where � = 1 � �: Evidently, this is a metric of a cone(cf. (1)), which in view of (5) gives!12r = !21r = 0; !12' = �!21' = 1� �: (11)At � = 0 it goes over to a at one. A topologically non-trivial gauge �eld (8) results in a conical singularity ofthe spin connection. The uxIC !12' d' = 2�� 6= 0:represents a \net" e�ect produced by a disclination onthe moving electrons. We thus show that the gauge-�eld approach within the linear approximation exactlycoincides with that provided by the \cut-and-glue" pro-cedure.

III. Flexible surface. As a matter of fact, a conewith a point-like apex is mathematical abstraction sincein a real situation the media has a �nite sti�ness, whichwould inevitably result in a certain smearing of a conicalsingularity. Therefore, a proper description of the discli-nation implies a smooth deformation of the metric andat the same time one has to preserve a conical behaviorfar away from the origin. Although such a surface cane�ectively be approximated by a hyperboloid, we shownow that one cannot incorporate �nite elasticity into thetheory by simply replacing a cone by a smooth surfacethat asymptotically approaches a cone far away from theorigin. This would simply kill the defect.To illustrate this, consider an upper half of a hyper-boloid as an embedding(�; ')! (a sinh� cos'; a sinh� sin'; c cosh�);0 � � <1; 0 � ' < 2�:The components of the induced metric can be written asg�� = a2 cosh2 �+ c2 sinh2 �;g'' = a2 sinh2 �; g'� = g�' = 0; (12)which in view of (5) gives for the spin connection coef-�cients!12� = !21� = 0; !12' = �!21' = �1� a cosh�pg�� � =: !(�):(13)The spin connection in the spinor SO(2) representationbecomes 
' = i!�3: (14)Since !(�) goes to zero as � ! 0 a circulation of that�eld over a loop encircling the origin gives a ux whichtends to zero as the counter shrinks to zero,lim�!0 IC� !12 = 0;where C� stands for a closed counter which encloses asmall area � �2 around the origin. This equation impliesthat there is no a topologically nontrivial part in the ux.It is therefore clear that one should work out some otherway to explicitly accomodate elastic deformations in the"cut-and-glue" procedure that would preserve a conicalsingularity at the origin.We show now that the gauge-theory appoach pro-vides the necessary framework. Within this theory thenontrivial ux is kept intact and at the same time theelastic deformations are allowed for. Since a plane can�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 3 { 4 2010



124 E.A.Kochetov, V.A.Osipovsmoothly be deformed into a hyperboloid, ahyperboloid-type smearing naturally emerges due tothe elastic deformations of the elastic plane. Actually,the proper metric could be obtained from the exactsolution of self-consistent equations in the continuumtheory of buckled membranes (see (4.10) in [7] and (25)in [8]). However, this very complicated problem is stillunsolved. Instead, we suggest to ful�l these require-ments by applying restrictions on the parameters of thehyperboloid. Namely, the parameter c must be propor-tional to �� while the parameter a should depend onboth the Young's modulus K0 and the bending rigidity�. In fact, the �rst condition comes from a trial solutionaway from the disclination core found in [7] which readsc � �1=2. The parameter a(K0; �) must meet the con-dition a(K0; �) ! 1 at K0 ! 1. Indeed, the intrinsiccurvature of the hyperboloid readsK = c2(a2 cosh2 �+ c2 sinh2 �)2 ; (15)which vanishes at K0 ! 1 as it should be in the inex-tensional limit. At the same time, a disclination defectsitting at the origin is taken care of by the gauge �eld(8). In accordance with (4) this �eld induces the follow-ing explicit changes in the geometry of the hyperboloid:g'' = a2�2 sinh2 �; (16)and !12' = �!21' = �1� a� cosh�pg�� � =: !�(�): (17)

Here again � = 1� �: Since!�(�)! 1� �; �! 0;this spin connection term in contrast with (13) containsa topologically nontrivial part that gives rise to a �xedux, lim�!0 IC� !12 = 2��:We thus �nally get the smoothed apex, the cone-likeasymptotic at large distances and the unremovable con-ical singularity at the disclination line. It is known thatin case a spin connection contains an SO(2) piece withnontrivial ux, that �eld cannot be eliminated underany smooth deformation of the underlying metric (see,e.g., [10]). Within our approach this simply means thata nontrivial contribution to the spin connection whichcomes from the gauge �eldW survives any smooth elas-tic deformations of the media. Notice also that at largedistances we expect only small deviations from the coneresulting from the "cut and glue" procedure, so that thephysically reasonable restriction is � = c=a � 1. Inother words, we restrict our consideration to materialswith high K0.In 2D the Dirac matrices can be chosen to be thePauli matrices: 1 = ��2; 2 = �1. The Dirac operatorthen readsbD = 24 0 e�i' �� @�pg�� + 1a� sinh� (i@' + 12!�(�))�ei' � @�pg�� + 1a� sinh� (i@' � 12!�(�))� 0 35 : (18)At � = 1 (� = 0) it reduces to a at one. For nonzero �and K0 !1, the parameter �! 0 and one obtains theDirac operator on a cone.The eigenfunctions to (18) are classi�ed with respectto the eigenvalues of Jz = j+1=2; j = 0;�1;�2; :::; andare to be taken in the form =  u(r)ei'jv(r)ei'(j+1) ! : (19)The substitution ~ =  psinh�reduces the eigenvalue problem (18) to

@�~u� ~jpcoth2 �+ �2 ~u = ~E~v;�@�~v � ~jpcoth2 �+ �2 ~v = ~E~u; (20)where ~E = pg�� E and ~j = (j + 1=2)=�.One of the most interesting problems associated withDirac fermions in disclinated elastic media is the mani-festation of the topological e�ects. For various graphenesurfaces these issues were discussed in [11 { 20]. Let usstudy the inuence of the smoothed cap on the emer-gence of the zero-mode states in exible disclinated ma-terials. A general solution to (20) at E = 0 is found tobe �¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 3 { 4 2010



Dirac fermions on a disclinated exible surface 125~u0(�) = A �(k cosh�+�)2k �� cosh��+ cosh��~j=2 ;~v0(�) = A �(k cosh�+�)2k �� cosh��+ cosh���~j=2 ; (21)where k = p1 + �2, � =p1 + k2 sinh2 �. The normal-ization conditions read as follows: �1=2 < ~j < �1=2kfor u0(�) and 1=2k < ~j < 1=2 for v0(�) (see [9]). As aresult, at small �, which is of interest here, there are nonormalized solutions. This means that in sti� materialssmoothing has no marked e�ect on the existence of zeromodes. The situation drastically changes in the presenceof the uniform magnetic �eld directed along the z-axis.In this case, one of the modes (either ~u(�) or ~v(�)) be-comes normalizable and there exists a true zero-energystate. Therefore, one can expect \switching-like" e�ectsgoverned by the magnetic �eld. Studies of this prob-lem are now in progress. Notice that when � ! 0 thewave functions u0(�) and v0(�) vanish and we arrive atanother class of solutions typical for a true cone (see,e.g., [13]).IV. Conclusion. In conclusion, we have presenteda general approach based on the gauge-theory and geo-metrical consideration which allows us to describe Diracfermions on exible surfaces in the presence of a disclina-tion. Our model takes into account a 'seamless' smear-ing of the conical singularity in the curvature thus avoid-ing the evident problem at the core radius in (2). Theelasticity of the surface a�ects the embedding which ischosen to be a plane in the inextentional limit and ahyperboloid-type surface for a exible material. Withinour approach both the elastic deformations and the topo-logically nontrivial gauge �eld contribute to the inducedmetric, which in turn a�ects the spin connection. Itis in this way that Dirac fermions are a�ected by thetopological disclination defects. This approach providesa new insight into disclination theory in a curved 2Dbackground in the presence of electrons and may there-fore reveal some novel physical phenomena. In order toapply our consideration to the graphene-based curvedmaterials, one has to take into account an additionalnon-Abelian gauge �eld which is responsible for coupling
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