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We consider topological invariants describing semimetal (gapless) and insulating (gapped) states of the
quantum vacuum of Standard Model and possible quantum phase transitions between these states.

1. Introduction. Recently topological insula-
tors, semimetals, superconductors, superfluids and other
topologically nontrivial gapless and gapped phases of
matter have attracted a lot of attention. Probably the
first discussion of the 3D topological insulators in crys-
tals can be found in Refs. [1, 2]; the two-dimensional
massless edge states of electrons at the interface between
topologically different bulk states have been discussed
in [2]. The fully gapped 3D superfluid with nontriv-
ial topology is represented by the phase B of superfluid
3He; the corresponding 2D gapless quasiparticles living
at interfaces have been discussed in [3]. Examples of
the 2D topological fully gapped systems are provided
by the films of superfluid ®He in the phase A and in
the planar phase; the topological invariants give rise to
quantization of the Hall and spin-Hall currents in these
films in the absence of external magnetic field [4]. The
three-dimensional 3He-B and the two-dimensional pla-
nar phase of triplet superfluid /superconductor belong to
the time-reversal invariant topological states of matter.

Different aspects of physics of topological matter
have been discussed, including topological stability of
gap nodes; classification of fully gapped vacua; edge
states; Majorana fermions; influence of disorder and in-
teraction; topological quantum phase transitions; intrin-
sic Hall and spin-Hall effects; quantization of physical
parameters; experimental realization; connections with
relativistic quantum fields; chiral anomaly; etc. [5]-[47]

The vacuum of Standard Model (SM) is also a topo-
logical substance: both known states of the SM vac-
uum — gapless semimetal state and fully gapped insulat-
ing state — possess the non-trivial topological invariants.
Here we present the explicit expression for the relevant
topological invariants of SM, and discuss possible topo-
logical quantum phase transitions occurring between the
vacuum states.
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2. Green’s function as an object. The object for
the topological classification must be the Green’s func-
tion rather than Hamiltonian. Then it is applicable even
in cases when one cannot introduce the effective low en-
ergy Hamiltonian, for example when Green’s function
does not have poles, see [31, 48] in condensed mat-
ter, unparticles in relativistic quantum fields [49] and
phenomenon of quark confinement in QCD with sug-
gested anomalous infrared behavior of the quark and
gluon Green’s functions [50, 51, 52].

Green’s function topology has been used in particu-
lar for classification of topologically protected nodes in
the quasiparticle energy spectrum of systems of different
dimensions including the vacuum of Standard Model in
its gapless state [53, 23, 26, 31]; for the classification of
the topological ground states in the fully gapped 2 + 1
systems, which experience intrinsic quantum Hall and
spin-Hall effects [4, 14, 20, 21, 23, 31]; in relativistic
quantum field theory of 2 + 1 massive Dirac fermions
[64, 55, 56]; etc.

The quantum phase transition occurs when some pa-
rameter of the system crosses the critical value at which
the momentum-space topology of the Green’s function
changes. In SM the role of such parameter may be
played by the high-energy cut-off scales, such as the ul-
traviolet Eyy and compositeness E. energy scales intro-
duced in Ref. [57]. In the limit Eyv/E. — oo, all three
running coupling constants vanish, (ai,a2,a3) — 0
[67]. In this zero-charge limit fermions become uncou-
pled from the gauge fields, the gauge invariance becomes
irrelevant, and the gauge groups of SM may be consid-
ered as the global groups which connect the fermionic
species. That is why in this limit the Green’s function
is well defined.

In general case when the gauge invariance is im-
portant there are two different approaches to treat the
Green’ function. (i) One may use the gauge-fixing con-
ditions. Though in this approach the Green’s function
depends on the choice of the gauge, the topological in-
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variants are robust to continuous deformations and thus
should not depend on the choice of the gauge (only
large gauge transformations are prohibited since they
may change the value of topological invariant). (ii) One
may use the two-point Green’s function with points con-
nected by a special path-ordered exponential, which pro-
duces the parallel transport of color from one point to
the other and thus makes the propagator gauge invariant.
In this case the Green’s function is path-dependent, and
we assume the straight contours to ensure translational
invariance, which allows us to consider the Green’s func-
tion in momentum space.
Simplest examples of the Green’s function are 2 x 2
matrix Green’s function for chiral Weyl fermions
_ 2
S =", (1)
iwto-p
with + sign for right and — sign for left fermions, and
4 x 4 matrix Green’s function for Dirac fermions:
2
g Z(p*) @)

—iykp, + M(p?)’

Here o are spin Pauli matrices; Dirac matrices will be
chosen according to Sec. 5.4 in Ref. [58]:

0

Y’ =—in, y=mo, v5=—i"7YVV¥ =1 (3)

For the topological classification of the gapless vacua, the
Green’s function is considered at imaginary frequency
Ppo = iw, i.e. the Euclidean propagators are used and

p’=p’—py =p + . (4)

This allows us to consider only the relevant singularities
in the Green’s function and to avoid the singularities on
the mass shell, which exist in any vacuum, gapless or
fully gapped.

There is the following topological invariant expressed
via integer valued integral over the S® surface o around
the point p? = 0 in momentum space [23]:

€ap -1 -1 -1

N = o gy / dS* 58,5750, 550,57 . (5)
o

Here trace is over all the fermionic indices of the Green’s

function matrix including spinor indices. This invariant

(5) equals the difference between numbers of right and

left fermionic species,

N =ng —ng. (6)

One has N = +1 for a single right fermionic species in
(1); N = —1 correspondingly for a single left fermion.
For massless Dirac fermions one has N = +1 —1 =0,

which demonstrates that there is no topological protec-
tion, and interaction may produce mass term in (2).
Eq.(6) is applicable to the general case when interaction
between the fermions is added, or Lorentz invariance is
violated. Nonzero value N of the integral around some
point in momentum space tells us that at least NV fermi-
onic species are gapless and have nodes in the spectrum
at this point.

3. Topological invariant protected by symme-
try in semi-metal state. We assume that SM con-
tains equal number of right and left Weyl fermions,
ng = nr = 8ng , where ng is the number of genera-
tions (we do not consider SM with Majorana fermions,
and assume that in the insulating state of SM neutri-
nos are Dirac fermions). For such Standard Model the
topological charge in (5) vanishes, N = 0. Thus the
masslessness of the Weyl fermions is not protected by
the invariant (5), and arbitrary weak interaction may
result in massive particles.

However, there is another topological invariant,
which takes into account the symmetry of the vacuum.
The gapless state of the vacuum with N = 0 can be
protected by the following integral [23]:

(7)

where K;; is the matrix of some symmetry transforma-
tion. In SM there are two relevant symmetries, both
are the Z, groups, K? = 1. One of them is the center
subgroup of SU(2);, gauge group of weak rotations of
left fermions, where the element K is the gauge rotation
by angle 27, K = e'"™3Z. The other one is the group
of the hypercharge rotation be angle 6, K = Y. In
the G(224) Pati-Salam extension of the G(213) group
of SM, this symmetry comes as combination of the Z;
center group of the SU(2) g gauge group for right fermi-
ons, ek and the element e3™(B~L) of the Z, center
group of the SU(4) color group — the P parity (on
the importance of the discrete groups in particle physics
see [59, 60] and references therein). Each of these two
Zy symmetry operations changes sign of left spinor, but
does not influence the right particles. Thus these matri-
ces are diagonal, K;; = diag(1,1,...,-1,-1,...), with
eigen values 1 for right fermions and —1 for left fermi-
ons.

In the symmetric phase of Standard Model, both ma-
trices commute with the Green’s function matrix S;;, as
a result N' is topological invariant: it is robust to defor-
mations of Green’s function which preserve the symme-
try. Simple explanation is the following. The Z> symme-
tries K completely forbid the mixing, M (p?) = 0, and
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one has two independent sectors in the Green’s func-
tion matrix with two independent topological invariants
N = N' = ng for right fermions and N = —N' = —np,
for left fermions. Thus the symmetric phase of Standard
Model contains N' = 16n, massless fermions, which
remain massless even if the interaction is introduced.
Since the mixing between leptons and quarks is negli-
gibly small at low energies, the invariant (7) splits into
two separate invariants for leptonic and baryonic sectors
N'= Nlleptons + Nl;aryons = 4n9 + 12”’9‘

This is one of numerous examples of integer valued
topological invariants which are supported by discrete
or continuous symmetry. Other examples in condensed
matter systems and in quantum field theory can be found
in Refs. [4, 17, 20, 23, 31].

The integral (7) can be applied also to vacua with
massive Dirac fermions. In the massive case this inte-
gral is no more the topological invariant: it depends in
particular on the running mass parameter y — the ra-
dius of the S® sphere o about the origin, p? + w? = 2.
The function N'(u) for the Dirac vacuum is illustrated
in Fig.1. In the limit of large p > M, the interaction

»
»

0 M u

Fig.1. Integral (7) as function of running energy p in the
vacuum of a system with one right and one left fermions
in the insulating and symmetric gapless states. (i) In the
symmetric state (dashed line), equation (7) represents the
topological invariant protected by symmetry K. Its mag-
nitude N’ does not depend on the choice of the 3D surface
o. (ii) In the insulating state (solid line) there is no sym-
metry, which could protect the topological invariant. That
is why fermions become massive Dirac particles. The op-
erator K does not commute with the Green’s function, as
a result, the integral N' in (7) is not invariant under de-
formation of the 3D surface o and depends on its radius
p of the S* sphere: w® 4+ p?> = p®. The function N'(u)
experiences a crossover at 4 ~ M, where M is mass of
Dirac particle. Similar crossovers between plateaus with
different integer value of the integral (7) occur in SM

between right and left fermions vanishes, the symme-
try K is restored, and the integral approaches the value
N' = 2. In the opposite limit, u < M, the intergral van-
ishes, because there is no symmetry which may protect
the singularity at p?> = 0.
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4. Topological invariant protected by symme-
try in insulating vacuum. In the asymmetric phase
of SM, there is no mass protection by topology and all
the fermions are massive, i.e. SM vacuum becomes the
fully gapped insulator. In principle the transition be-
tween the gapless vacuum of SM and its insulating state
could be the topological quantum phase transition as in
condensed matter (see [17, 61, 62]). There are also the
other possible quantum phase transitions — topological
transitions between different insulating states with dif-
ferent topological charges relevant for the fully gapped
fermions.

In the fully gapped systems, the Green’s function
has no singularities in the 4D space (w,p). That is
why the integral (7) over infinitesimal surface o van-
ishes, N'(u — 0) — 0, see Fig.1.

However, now we are able to use the other 3D surface
o in the integral (7). The option for o is the momentum
slice pg = 0, i.e. the integration is over the whole 3D
momentum space p at fixed pg = 0. This option is not
invariant under Lorentz transformation, which leads to
rotation of the 3D subspace o in the 4D space, but the
topological invariants are robust to rotation and do not
depend on the choice of the coordinate system.

We shall use the slice pyp = 0, i.e. the Green’s func-
tion at zero frequency:

Z(0,p%)
—iTyo - p + M(0,p2)’

S(po =0,p) = (8)
The propagator at pg = 0 has all the properties of a free-
fermion Hamiltonian, whose topology was discussed in
Ref. [39], but it emerges in interacting systems and thus
takes into account the interaction (see [25, 44]).

In the insulating state of SM, the topological invari-
ant (5) with o being the slice py = 0 is zero. The non-
zero topological invariant, which is relevant for these

types of insulators, is the symmetry protected invariant
[44]:

e €ijk _ _ _
N = 24;2 tr |:7'2/p 0d3p56pi5 15’6ij 15’6ka .
o=
9)

For SM the matrix 7» = 757° according to (3). This
matrix commutes with the Green’s function at py = 0,
which makes (9) the topological invariant.

Conventional massive Dirac fermions with ny =
ng = 1 and with momentum independent mass term
M (p?) = M have non-zero topological charge

N =sign(M). (10)

However, the space of the Green’s function of free Dirac
fermions is non-compact: S has different asymptotes at



64 G. E. Volovik

|p| — oo for different directions of momentum p. As a
result, the topological charge of free Dirac fermions is ill-
defined and even could be fractional. We shall see that it
acquires intermediate values between the charges of the
vacua with compact Green’s function (see Fig.2). On

M,
N=-2 N=0
~ 0 ~
N=-1 N=+1 M,
free free
: ~ = Dirac
Dirac N=0 N=12

Fig.2. Phase diagram of topological states of the vac-
uum of single Dirac fermionic field with mass function
M(pz) = My + M>p? in the plane (Mo, M>). States on the
line M> = 0 correspond to the vacua of non-interacting
Dirac field, whose Green’s function space is non-compact.
Topological charge of the free Dirac fermions is intermedi-
ate between charges of compact states. The line My = 0
separates the states with different asymptotic behavior at
infinity: S7'(0,p) ~ £p?. The line My = 0 marks topo-
logical quantum phase transition (QPT) between the topo-
logically trivial insulator with N = 0 and topological insu-
lators with N = +2. The intermediate states — the vacua
on the line of this QPT — are gapless

the marginal behavior of free Dirac fermions see Refs.
[12, 34, 23, 44].

5. Quantum phase transitions. The interaction
may essentially modify the Green’s function so that its
space becomes compact and thus the topological invari-
ant becomes well defined. As an illustration consider
fermions with mass function

M(p®) = My + Msp®. (11)

The inverse Green’s function approaches infinity for any
direction of p, that is why the space of Green’s function
is compact. For the mass spectrum in (11) one has for
M > 0:

N=0, My>0; N=-2 My<0. (12)
Vacuum states with the same symmetry but with differ-
ent values of the topological invariant N are shown in
Fig.2 in the plane (Mo, M>). The lines of quantum phase
transition (QPT) separate the trivial insulating vacuum
with N = 0 and the topological insulators with N = +2.

States on the horizontal axis (line M, = 0) cor-
respond to the vacuum of free Dirac fermions, whose
Green’s function space is non-compact. Topological
charge N of the free Dirac fermions is intermediate be-
tween charges of compact states with My # 0. The line
M, = 0 separates the states with different asymptotic
behavior at infinity: S~1(0,p) — +p?, while fermions
remain gapped even at the transition line.

Intermediate gapless states: The vertical axis (line
M, = 0) separates the states with the same asymptote
of the Green’s function at infinity. The abrupt change
of the topological charge across the line, AN = 2, with
fixed asymptote shows that one cannot cross the tran-
sition line adiabatically. This means that all the inter-
mediate states on the line of this QPT are necessarily
gapless. We know that the intermediate state between
the free Dirac vacua with opposite mass parameter M is
massless, but this is applicable not only to the vacuum
of free Dirac field but to any state on the line of quantum
phase transition. Let us consider the intermediate state
at Mp = 0 and Ms # 0. There is no symmetry which
could protect the gaplessness of this state: the integral
N' in (7) which is responsible for massless fermions is
not the topological invariant for M> # 0 and thus de-
pends on the energy scale y. Fig.3 demonstrates this

N ()

0 Y

Fig.3. Integral (7) as function of running energy u in case
when symmetry K emerges at small energy

dependence. The most striking feature is that N'(u)
approaches the integer value when p — 0. This looks
as if the symmetry K emerges at small p*>. This hap-
pens because we approach the line of topological QPT,
at which fermions necessarily become gapless.

In principle, it is not excluded that in a similar way
the symmetry K of SM emerges when p decreases be-
low some ultraviolet energy scale E,, and in the region
Eyy > > E.y fermions are effectively massless. Then
below the electroweak scale, y < Eey, the symmetry K
is violated again leading to massive particles. Such reen-
trant violation of symmetry K is possible if the vacuum
of our Universe lives on the line of QPT. The reason
why nature prefers the critical line of QPT may be that
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the gapless states on the line are able to accommodate
more entropy than the gapped states.

Fermion zero modes: The gaplessness of the inter-
mediate state leads also to the other related phenom-
enon. The two-dimensional interface (brane), which sep-
arates two domains with different N, contains fermion
zero modes, 2+1 massless fermions. The number of zero
modes is determined by the difference AN between the
topological charges of the vacua on two sides of the in-
terface [42, 44]. This is similar to the index theorem
for the number of fermion zero modes on cosmic strings,
which is determined by the topological winding num-
ber of the string [63]. However, while topological charge
of string results from spontaneously broken symmetry
which determines topology of defects in real space, the
topological charge of the interface between two vacua is
determined by topology in momentum space.

Since the integrand in (9) does not obey Lorentz in-
variance, Eq. (9) is applicable also to non-relativistic
systems: to superfluid *He-B [3, 44]; for condensed mat-
ter Hamiltonians discussed in Refs. [37] and [38]; and
for many other fully gapped systems. In case of lat-
tice models of quantum field theories or for topological
insulators in crystals [1, 2], the integral is over the 3D
Brillouin zone. In particular, the phase diagram in Fig.2
is applicable to superfluid ®He-B where the mass term
has just the form M (0, p?) = My + M>p? [64, 23]. Here
the parameter My = 1/2m* is related to the effective
mass m* in normal Fermi-liquid; parameter —Mj plays
the role of the chemical potential of 3He atoms; matri-
ces T are Bogoliubov-Nambu matrices in particle-hole
space; and the role of speed of light ¢ is played by the
pair-breaking velocity (in both cases we set ¢ = 1).

6. Discussion. Vacuum of SM is a topological
medium. Both known states of the quantum vacuum
of SM have non-trivial topology. The insulating state is
described by nonzero value of topological invariant N in
(9), while the semi-metal state — by topological invariant
N’ in (7). Both invariants are supported by symmetry.

Momentum space topology suggests a number of pos-
sible quantum phase transitions in the quantum vacuum
of SM (see Fig.4). The transition between the semimetal
gapless state and the fully gapped insulating state of the
vacuum is one of them. Condensed matter examples
demonstrate that QPT may occur without symmetry
breaking, as a purely topological QPT [17, 61, 31, 62].
In principle, this is possible in SM too. The symmetry
K in the topological invariant N’ in (7), which protects
massless fermions in the semimetal state of SM, may be
emergent as we discussed in Sec. 5. In this case the
electroweak transition or crossover would correspond to
QPT in Fig.4 right top or Fig.4 left correspondingly.
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Fig.4. Quantum phase transitions (QPT) governed by
topology. Left: Point of topological quantum phase tran-
sition in the plane (¢, T'), where ¢ is some parameter of the
system (see e.g. [31]). At T = 0, the vacua are topologi-
cally not equivalent and cannot be adiabatically connected
across the transition point g.. They are described either by
different topological invariants, or by different values of the
same topological invariant. However, states at ¢ < g. and
q > q. have the same symmetry and thus can be contin-
uously connected by the path at T # 0 around the point.
Examples are Lifshitz transitions; plateau transitions in
quantum Hall effect; semi-metal — insulator transition in
systems of *He-A type; transition between the trivial in-
sulator and topological insulator in systems of *He-B type,
see Fig.2; possibly the confinement-deconfinement transi-
tion in QCD and topological quantum phase transitions in
SM, where the relevant parameter ¢ may be played by the
ratio of high-energy cut-off scales ¢ = Fuv/E. in Ref. [57].
Right: topological QPT can be interrupted by thermody-
namic phase transitions of the 1-st or/and 2-nd order. This
type of behavior may occur in QCD

There can be also quantum phase transitions be-
tween the insulating states: these states may have
the same symmetry, but different values of topological
charge N in (9) (see Fig.2). In SM, such states would
correspond to different configurations of mass matrices
[65], which have different values of invariant N. Accord-
ing to (10) such transition occurs when one of the eigen
values of the mass matrix crosses zero. This may occur
in the neutrino sector (for example, from the Mikheev-
Smirnov-Wolfenstein type effects due to the interactions
of neutrinos and ambient matter [66]). The variety of
transitions is enhanced if the fermions of the 4-th gener-
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ation are added (discussion of the present status of the
fourth generation fermions in SM see in [67]).

It is not excluded that the phenomenon of quark con-
finement in quantum chromodynamics is also one of the
manifestations of the nontrivial topology of the vacuum
medium, which emerges due to interaction of fermions
with a non-Abelian gauge field. There are some indica-
tions that the phenomenon of confinement is related to
the anomalous infrared properties of the Green’s func-
tion. As first argued by Gribov [50], a perturbative pole
of the gluon propagator is converted into a zero at the
vanishing momentum (see recent papers [51, 52]). In
principle it is still not excluded by lattice simulations
[68, 69] that the same happens with quark propagator.
In condensed matter the conversion of pole to zero has
been also discussed, see e.g. [31, 51, 48] and references
therein. This conversion occurs as a quantum phase
transition, and one may expect that the confinement and
deconfinement states of quantum vacuum are also sepa-
rated by a similar quantum phase transition related to
topology of the Green’s function. In this case if the lines
of thermodynamic phase transitions are wiped out from
the QCD phase diagram in Ref.[70] (whose simplified
version is in Fig.4 right), then what is left would be
the topological QPT between the QCD vacua with and
without confinement.

Topological analysis of quantum vacua in terms of
Green’s function becomes even more important if SM
is not a fundamental theory, but is an effective theory,
where all the gauge symmetries emerge only at low en-
ergy. In this case the Green’s function is the general
32n4 x 32n4 matrix, which does not split into blocks. Its
elements may be connected by some discrete symmetries
of the underlying physics, such as Z and Z; symmetries
K discussed in Sec. 3. These discrete symmetries give
rise to topological invariant N' in (7) which generates
emergent chiral fermions at low energy and also serves
as a source of emergent gauge groups [23].

If the Lorentz symmetry and CPT are also emergent
(on the present status of bounds on violation of these
symmetries see [71] and references therein), the other
types of quantum phase transition are possible in SM.
Among them the splitting of Fermi points and forma-
tion of Fermi surfaces with non-zero global topological
charge N in (5) [61, 31]. Such transitions lead in partic-
ular to induced Chern-Simons terms in effective action
with parameters determined by splitting. In 3D con-
densed matter systems these parameters correspond to
a non-quantized part of the intrinsic Hall conductivity
[61, 25]. Reentrant violation of Lorentz symmetry which
occurs at low energy leads to formation of exotic mass-
less fermions with nontrival momentum space topology:

fermions with quadratic dispersion at low energy and
semi-Dirac fermions with linear dispersion in one di-
rection and quadratic dispersion in the other [72, 23].
Examples of such fermions in condensed matter are in
Refs. [72, 31, 73, 74].
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