
Pis'ma v ZhETF, vol. 91, iss. 2, pp. 61 { 67 c 2010 January 25Topological invariants for Standard Model: from semi-metal totopological insulatorG.E.Volovik1)Low Temperature Laboratory, Helsinki University of Technology, FIN-02015 HUT, FinlandLandau Institute for Theoretical Physics RAS, 119334 Moscow, RussiaSubmitted 14 December 2009We consider topological invariants describing semimetal (gapless) and insulating (gapped) states of thequantum vacuum of Standard Model and possible quantum phase transitions between these states.1. Introduction. Recently topological insula-tors, semimetals, superconductors, superuids and othertopologically nontrivial gapless and gapped phases ofmatter have attracted a lot of attention. Probably the�rst discussion of the 3D topological insulators in crys-tals can be found in Refs. [1, 2]; the two-dimensionalmassless edge states of electrons at the interface betweentopologically di�erent bulk states have been discussedin [2]. The fully gapped 3D superuid with nontriv-ial topology is represented by the phase B of superuid3He; the corresponding 2D gapless quasiparticles livingat interfaces have been discussed in [3]. Examples ofthe 2D topological fully gapped systems are providedby the �lms of superuid 3He in the phase A and inthe planar phase; the topological invariants give rise toquantization of the Hall and spin-Hall currents in these�lms in the absence of external magnetic �eld [4]. Thethree-dimensional 3He-B and the two-dimensional pla-nar phase of triplet superuid/superconductor belong tothe time-reversal invariant topological states of matter.Di�erent aspects of physics of topological matterhave been discussed, including topological stability ofgap nodes; classi�cation of fully gapped vacua; edgestates; Majorana fermions; inuence of disorder and in-teraction; topological quantum phase transitions; intrin-sic Hall and spin-Hall e�ects; quantization of physicalparameters; experimental realization; connections withrelativistic quantum �elds; chiral anomaly; etc. [5]-[47]The vacuum of Standard Model (SM) is also a topo-logical substance: both known states of the SM vac-uum { gapless semimetal state and fully gapped insulat-ing state { possess the non-trivial topological invariants.Here we present the explicit expression for the relevanttopological invariants of SM, and discuss possible topo-logical quantum phase transitions occurring between thevacuum states.1)e-mail: volovik@boojum.hut.�

2. Green's function as an object. The object forthe topological classi�cation must be the Green's func-tion rather than Hamiltonian. Then it is applicable evenin cases when one cannot introduce the e�ective low en-ergy Hamiltonian, for example when Green's functiondoes not have poles, see [31, 48] in condensed mat-ter, unparticles in relativistic quantum �elds [49] andphenomenon of quark con�nement in QCD with sug-gested anomalous infrared behavior of the quark andgluon Green's functions [50, 51, 52].Green's function topology has been used in particu-lar for classi�cation of topologically protected nodes inthe quasiparticle energy spectrum of systems of di�erentdimensions including the vacuum of Standard Model inits gapless state [53, 23, 26, 31]; for the classi�cation ofthe topological ground states in the fully gapped 2 + 1systems, which experience intrinsic quantum Hall andspin-Hall e�ects [4, 14, 20, 21, 23, 31]; in relativisticquantum �eld theory of 2 + 1 massive Dirac fermions[54, 55, 56]; etc.The quantum phase transition occurs when some pa-rameter of the system crosses the critical value at whichthe momentum-space topology of the Green's functionchanges. In SM the role of such parameter may beplayed by the high-energy cut-o� scales, such as the ul-traviolet EUV and compositeness Ec energy scales intro-duced in Ref. [57]. In the limit EUV=Ec !1, all threerunning coupling constants vanish, (�1; �2; �3) ! 0[57]. In this zero-charge limit fermions become uncou-pled from the gauge �elds, the gauge invariance becomesirrelevant, and the gauge groups of SM may be consid-ered as the global groups which connect the fermionicspecies. That is why in this limit the Green's functionis well de�ned.In general case when the gauge invariance is im-portant there are two di�erent approaches to treat theGreen' function. (i) One may use the gauge-�xing con-ditions. Though in this approach the Green's functiondepends on the choice of the gauge, the topological in-�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 1 { 2 2010 61



62 G.E.Volovikvariants are robust to continuous deformations and thusshould not depend on the choice of the gauge (onlylarge gauge transformations are prohibited since theymay change the value of topological invariant). (ii) Onemay use the two-point Green's function with points con-nected by a special path-ordered exponential, which pro-duces the parallel transport of color from one point tothe other and thus makes the propagator gauge invariant.In this case the Green's function is path-dependent, andwe assume the straight contours to ensure translationalinvariance, which allows us to consider the Green's func-tion in momentum space.Simplest examples of the Green's function are 2� 2matrix Green's function for chiral Weyl fermionsS = Z(p2)i! � � � p ; (1)with + sign for right and � sign for left fermions, and4� 4 matrix Green's function for Dirac fermions:S = Z(p2)�i�p� +M(p2) : (2)Here � are spin Pauli matrices; Dirac matrices will bechosen according to Sec. 5.4 in Ref. [58]:0 = �i�1;  = �2�; 5 = �i0123 = �3: (3)For the topological classi�cation of the gapless vacua, theGreen's function is considered at imaginary frequencyp0 = i!, i.e. the Euclidean propagators are used andp2 = p2 � p20 = p2 + !2: (4)This allows us to consider only the relevant singularitiesin the Green's function and to avoid the singularities onthe mass shell, which exist in any vacuum, gapless orfully gapped.There is the following topological invariant expressedvia integer valued integral over the S3 surface � aroundthe point p2 = 0 in momentum space [23]:N = e����24�2 tr Z� dS� S@p�S�1S@p�S�1S@p�S�1 : (5)Here trace is over all the fermionic indices of the Green'sfunction matrix including spinor indices. This invariant(5) equals the di�erence between numbers of right andleft fermionic species,N = nR � nL: (6)One has N = +1 for a single right fermionic species in(1); N = �1 correspondingly for a single left fermion.For massless Dirac fermions one has N = +1 � 1 = 0,

which demonstrates that there is no topological protec-tion, and interaction may produce mass term in (2).Eq.(6) is applicable to the general case when interactionbetween the fermions is added, or Lorentz invariance isviolated. Nonzero value N of the integral around somepoint in momentum space tells us that at least N fermi-onic species are gapless and have nodes in the spectrumat this point.3. Topological invariant protected by symme-try in semi-metal state. We assume that SM con-tains equal number of right and left Weyl fermions,nR = nL = 8ng , where ng is the number of genera-tions (we do not consider SM with Majorana fermions,and assume that in the insulating state of SM neutri-nos are Dirac fermions). For such Standard Model thetopological charge in (5) vanishes, N = 0. Thus themasslessness of the Weyl fermions is not protected bythe invariant (5), and arbitrary weak interaction mayresult in massive particles.However, there is another topological invariant,which takes into account the symmetry of the vacuum.The gapless state of the vacuum with N = 0 can beprotected by the following integral [23]:N 0 = e����24�2 tr �K Z� dS�S@p�S�1S@p�S�1S@p�S�1� :(7)where Kij is the matrix of some symmetry transforma-tion. In SM there are two relevant symmetries, bothare the Z2 groups, K2 = 1. One of them is the centersubgroup of SU(2)L gauge group of weak rotations ofleft fermions, where the element K is the gauge rotationby angle 2�, K = ei���3L . The other one is the groupof the hypercharge rotation be angle 6�, K = ei6�Y . Inthe G(224) Pati-Salam extension of the G(213) groupof SM, this symmetry comes as combination of the Z2center group of the SU(2)R gauge group for right fermi-ons, ei���3R , and the element e3�i(B�L) of the Z4 centergroup of the SU(4) color group { the PM parity (onthe importance of the discrete groups in particle physicssee [59, 60] and references therein). Each of these twoZ2 symmetry operations changes sign of left spinor, butdoes not inuence the right particles. Thus these matri-ces are diagonal, Kij = diag(1; 1; : : : ;�1;�1; : : : ), witheigen values 1 for right fermions and �1 for left fermi-ons.In the symmetric phase of Standard Model, both ma-trices commute with the Green's function matrix Sij , asa result N 0 is topological invariant: it is robust to defor-mations of Green's function which preserve the symme-try. Simple explanation is the following. The Z2 symme-tries K completely forbid the mixing, M(p2) = 0, and�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 1 { 2 2010



Topological invariants for Standard Model: from semi-metal to topological insulator 63one has two independent sectors in the Green's func-tion matrix with two independent topological invariantsN = N 0 = nR for right fermions and N = �N 0 = �nLfor left fermions. Thus the symmetric phase of StandardModel contains N 0 = 16ng massless fermions, whichremain massless even if the interaction is introduced.Since the mixing between leptons and quarks is negli-gibly small at low energies, the invariant (7) splits intotwo separate invariants for leptonic and baryonic sectorsN 0 = N 0leptons +N 0baryons = 4ng + 12ng.This is one of numerous examples of integer valuedtopological invariants which are supported by discreteor continuous symmetry. Other examples in condensedmatter systems and in quantum �eld theory can be foundin Refs. [4, 17, 20, 23, 31].The integral (7) can be applied also to vacua withmassive Dirac fermions. In the massive case this inte-gral is no more the topological invariant: it depends inparticular on the running mass parameter � { the ra-dius of the S3 sphere � about the origin, p2 + !2 = �2.The function N 0(�) for the Dirac vacuum is illustratedin Fig.1. In the limit of large � � M , the interaction
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Fig.1. Integral (7) as function of running energy � in thevacuum of a system with one right and one left fermionsin the insulating and symmetric gapless states. (i) In thesymmetric state (dashed line), equation (7) represents thetopological invariant protected by symmetry K. Its mag-nitude N 0 does not depend on the choice of the 3D surface�. (ii) In the insulating state (solid line) there is no sym-metry, which could protect the topological invariant. Thatis why fermions become massive Dirac particles. The op-erator K does not commute with the Green's function, asa result, the integral N 0 in (7) is not invariant under de-formation of the 3D surface � and depends on its radius� of the S3 sphere: !2 + p2 = �2. The function N 0(�)experiences a crossover at � � M , where M is mass ofDirac particle. Similar crossovers between plateaus withdi�erent integer value of the integral (7) occur in SMbetween right and left fermions vanishes, the symme-try K is restored, and the integral approaches the valueN 0 = 2. In the opposite limit, ��M , the intergral van-ishes, because there is no symmetry which may protectthe singularity at p2 = 0.

4. Topological invariant protected by symme-try in insulating vacuum. In the asymmetric phaseof SM, there is no mass protection by topology and allthe fermions are massive, i.e. SM vacuum becomes thefully gapped insulator. In principle the transition be-tween the gapless vacuum of SM and its insulating statecould be the topological quantum phase transition as incondensed matter (see [17, 61, 62]). There are also theother possible quantum phase transitions { topologicaltransitions between di�erent insulating states with dif-ferent topological charges relevant for the fully gappedfermions.In the fully gapped systems, the Green's functionhas no singularities in the 4D space (!;p). That iswhy the integral (7) over in�nitesimal surface � van-ishes, N 0(�! 0)! 0, see Fig.1.However, now we are able to use the other 3D surface� in the integral (7). The option for � is the momentumslice p0 = 0, i.e. the integration is over the whole 3Dmomentum space p at �xed p0 = 0. This option is notinvariant under Lorentz transformation, which leads torotation of the 3D subspace � in the 4D space, but thetopological invariants are robust to rotation and do notdepend on the choice of the coordinate system.We shall use the slice p0 = 0, i.e. the Green's func-tion at zero frequency:S(p0 = 0;p) = Z(0;p2)�i�2� � p+M(0;p2) : (8)The propagator at p0 = 0 has all the properties of a free-fermion Hamiltonian, whose topology was discussed inRef. [39], but it emerges in interacting systems and thustakes into account the interaction (see [25, 44]).In the insulating state of SM, the topological invari-ant (5) with � being the slice p0 = 0 is zero. The non-zero topological invariant, which is relevant for thesetypes of insulators, is the symmetry protected invariant[44]:~N = eijk24�2 tr ��2 Zp0=0 d3pS@piS�1S@pjS�1S@pkS�1� :(9)For SM the matrix �2 = 50 according to (3). Thismatrix commutes with the Green's function at p0 = 0,which makes (9) the topological invariant.Conventional massive Dirac fermions with nL =nR = 1 and with momentum independent mass termM(p2) =M have non-zero topological charge~N = sign(M): (10)However, the space of the Green's function of free Diracfermions is non-compact: S has di�erent asymptotes at�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 1 { 2 2010



64 G.E.Volovikjpj ! 1 for di�erent directions of momentum p. As aresult, the topological charge of free Dirac fermions is ill-de�ned and even could be fractional. We shall see that itacquires intermediate values between the charges of thevacua with compact Green's function (see Fig.2). On
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Fig.2. Phase diagram of topological states of the vac-uum of single Dirac fermionic �eld with mass functionM(p2) =M0 +M2p2 in the plane (M0;M2). States on theline M2 = 0 correspond to the vacua of non-interactingDirac �eld, whose Green's function space is non-compact.Topological charge of the free Dirac fermions is intermedi-ate between charges of compact states. The line M2 = 0separates the states with di�erent asymptotic behavior atin�nity: S�1(0;p) � �p2. The line M0 = 0 marks topo-logical quantum phase transition (QPT) between the topo-logically trivial insulator with ~N = 0 and topological insu-lators with ~N = �2. The intermediate states { the vacuaon the line of this QPT { are gaplessthe marginal behavior of free Dirac fermions see Refs.[12, 34, 23, 44].5. Quantum phase transitions. The interactionmay essentially modify the Green's function so that itsspace becomes compact and thus the topological invari-ant becomes well de�ned. As an illustration considerfermions with mass functionM(p2) =M0 +M2p2: (11)The inverse Green's function approaches in�nity for anydirection of p, that is why the space of Green's functionis compact. For the mass spectrum in (11) one has forM2 > 0: ~N = 0; M0 > 0; ~N = �2; M0 < 0: (12)Vacuum states with the same symmetry but with di�er-ent values of the topological invariant ~N are shown inFig.2 in the plane (M0;M2). The lines of quantum phasetransition (QPT) separate the trivial insulating vacuumwith ~N = 0 and the topological insulators with ~N = �2.

States on the horizontal axis (line M2 = 0) cor-respond to the vacuum of free Dirac fermions, whoseGreen's function space is non-compact. Topologicalcharge ~N of the free Dirac fermions is intermediate be-tween charges of compact states with M2 6= 0. The lineM2 = 0 separates the states with di�erent asymptoticbehavior at in�nity: S�1(0;p) ! �p2, while fermionsremain gapped even at the transition line.Intermediate gapless states: The vertical axis (lineM0 = 0) separates the states with the same asymptoteof the Green's function at in�nity. The abrupt changeof the topological charge across the line, � ~N = 2, with�xed asymptote shows that one cannot cross the tran-sition line adiabatically. This means that all the inter-mediate states on the line of this QPT are necessarilygapless. We know that the intermediate state betweenthe free Dirac vacua with opposite mass parameterM ismassless, but this is applicable not only to the vacuumof free Dirac �eld but to any state on the line of quantumphase transition. Let us consider the intermediate stateat M0 = 0 and M2 6= 0. There is no symmetry whichcould protect the gaplessness of this state: the integralN 0 in (7) which is responsible for massless fermions isnot the topological invariant for M2 6= 0 and thus de-pends on the energy scale �. Fig.3 demonstrates this
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Fig.3. Integral (7) as function of running energy � in casewhen symmetry K emerges at small energydependence. The most striking feature is that N 0(�)approaches the integer value when � ! 0. This looksas if the symmetry K emerges at small p2. This hap-pens because we approach the line of topological QPT,at which fermions necessarily become gapless.In principle, it is not excluded that in a similar waythe symmetry K of SM emerges when � decreases be-low some ultraviolet energy scale Euv, and in the regionEuv � �� Eew fermions are e�ectively massless. Thenbelow the electroweak scale, � < Eew, the symmetry Kis violated again leading to massive particles. Such reen-trant violation of symmetry K is possible if the vacuumof our Universe lives on the line of QPT. The reasonwhy nature prefers the critical line of QPT may be that�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 1 { 2 2010



Topological invariants for Standard Model: from semi-metal to topological insulator 65the gapless states on the line are able to accommodatemore entropy than the gapped states.Fermion zero modes: The gaplessness of the inter-mediate state leads also to the other related phenom-enon. The two-dimensional interface (brane), which sep-arates two domains with di�erent ~N , contains fermionzero modes, 2+1 massless fermions. The number of zeromodes is determined by the di�erence � ~N between thetopological charges of the vacua on two sides of the in-terface [42, 44]. This is similar to the index theoremfor the number of fermion zero modes on cosmic strings,which is determined by the topological winding num-ber of the string [63]. However, while topological chargeof string results from spontaneously broken symmetrywhich determines topology of defects in real space, thetopological charge of the interface between two vacua isdetermined by topology in momentum space.Since the integrand in (9) does not obey Lorentz in-variance, Eq. (9) is applicable also to non-relativisticsystems: to superuid 3He-B [3, 44]; for condensed mat-ter Hamiltonians discussed in Refs. [37] and [38]; andfor many other fully gapped systems. In case of lat-tice models of quantum �eld theories or for topologicalinsulators in crystals [1, 2], the integral is over the 3DBrillouin zone. In particular, the phase diagram in Fig.2is applicable to superuid 3He-B where the mass termhas just the formM(0;p2) =M0+M2p2 [64, 23]. Herethe parameter M2 = 1=2m� is related to the e�ectivemass m� in normal Fermi-liquid; parameter �M0 playsthe role of the chemical potential of 3He atoms; matri-ces � are Bogoliubov-Nambu matrices in particle-holespace; and the role of speed of light c is played by thepair-breaking velocity (in both cases we set c = 1).6. Discussion. Vacuum of SM is a topologicalmedium. Both known states of the quantum vacuumof SM have non-trivial topology. The insulating state isdescribed by nonzero value of topological invariant ~N in(9), while the semi-metal state { by topological invariantN 0 in (7). Both invariants are supported by symmetry.Momentum space topology suggests a number of pos-sible quantum phase transitions in the quantum vacuumof SM (see Fig.4). The transition between the semimetalgapless state and the fully gapped insulating state of thevacuum is one of them. Condensed matter examplesdemonstrate that QPT may occur without symmetrybreaking, as a purely topological QPT [17, 61, 31, 62].In principle, this is possible in SM too. The symmetryK in the topological invariant N 0 in (7), which protectsmassless fermions in the semimetal state of SM, may beemergent as we discussed in Sec. 5. In this case theelectroweak transition or crossover would correspond toQPT in Fig.4 right top or Fig.4 left correspondingly.
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66 G.E.Volovikation are added (discussion of the present status of thefourth generation fermions in SM see in [67]).It is not excluded that the phenomenon of quark con-�nement in quantum chromodynamics is also one of themanifestations of the nontrivial topology of the vacuummedium, which emerges due to interaction of fermionswith a non-Abelian gauge �eld. There are some indica-tions that the phenomenon of con�nement is related tothe anomalous infrared properties of the Green's func-tion. As �rst argued by Gribov [50], a perturbative poleof the gluon propagator is converted into a zero at thevanishing momentum (see recent papers [51, 52]). Inprinciple it is still not excluded by lattice simulations[68, 69] that the same happens with quark propagator.In condensed matter the conversion of pole to zero hasbeen also discussed, see e.g. [31, 51, 48] and referencestherein. This conversion occurs as a quantum phasetransition, and one may expect that the con�nement anddecon�nement states of quantum vacuum are also sepa-rated by a similar quantum phase transition related totopology of the Green's function. In this case if the linesof thermodynamic phase transitions are wiped out fromthe QCD phase diagram in Ref.[70] (whose simpli�edversion is in Fig.4 right), then what is left would bethe topological QPT between the QCD vacua with andwithout con�nement.Topological analysis of quantum vacua in terms ofGreen's function becomes even more important if SMis not a fundamental theory, but is an e�ective theory,where all the gauge symmetries emerge only at low en-ergy. In this case the Green's function is the general32ng�32ng matrix, which does not split into blocks. Itselements may be connected by some discrete symmetriesof the underlying physics, such as Z2 and Z4 symmetriesK discussed in Sec. 3. These discrete symmetries giverise to topological invariant N 0 in (7) which generatesemergent chiral fermions at low energy and also servesas a source of emergent gauge groups [23].If the Lorentz symmetry and CPT are also emergent(on the present status of bounds on violation of thesesymmetries see [71] and references therein), the othertypes of quantum phase transition are possible in SM.Among them the splitting of Fermi points and forma-tion of Fermi surfaces with non-zero global topologicalcharge N in (5) [61, 31]. Such transitions lead in partic-ular to induced Chern-Simons terms in e�ective actionwith parameters determined by splitting. In 3D con-densed matter systems these parameters correspond toa non-quantized part of the intrinsic Hall conductivity[61, 25]. Reentrant violation of Lorentz symmetry whichoccurs at low energy leads to formation of exotic mass-less fermions with nontrival momentum space topology:
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