Аномалии теплоемкости вблизи квантовой критической точки в соединении ${ m Tm_{0.74}Yb_{0.26}B_{12}}$

*Н. Е. Случанко*¹⁾*, *А. В. Богач**, *В. В. Глушков**+, *С. В. Демишев**+, *С. Ю. Гаврилкин* $^{\nabla}$, *Н. Ю. Шицевалова* $^{\triangle}$, *В. Б. Филипов* $^{\triangle}$, *С. Габани*²⁾ $^{\Box}$, *К. Флахбар* τ ²⁾ $^{\Box}$

* Институт общей физики им. А.М. Прохорова РАН, 119991 Москва, Россия

⁺ Московский физико-технический институт, 141700 Долгопрудный, Московская обл., Россия

⊽Физический институт им. П.Н. Лебедева РАН, 119991 Москва, Россия

 $^{\bigtriangleup}$ Институт проблем материаловедения НАНУ, 03680 Киев, Украина

^ПИнститут экспериментальной физики САН, SK-04001 Кошице, Словакия

Поступила в редакцию 27 ноября 2009 г.

Исследовано поведение теплоемкости вблизи квантовой критической точки $x \sim 0.3$ в системе $\mathrm{Tm}_{1-x}\mathrm{Yb}_x\mathrm{B}_{12}$. Детальные измерения выполнены на монокристаллических образцах высокого качества состава $\mathrm{Tm}_{0.74}\mathrm{Yb}_{0.26}\mathrm{B}_{12}$ в широком диапазоне температур 1.9–300 К в магнитном поле до 9 Тл. Обнаружено поведение магнитного вклада в теплоемкость, характеризующееся при T < 4 К логарифмической расходимостью вида $C/T \sim \ln T$, которое может быть связано с режимом квантового критического поведения, подавляющимся внешним магнитным полем. Выполнен анализ аномалии Шоттки магнитного вклада в теплоемкость соединения $\mathrm{Tm}_{0.74}\mathrm{Yb}_{0.26}\mathrm{B}_{12}$.

1. В последнее время значительный интерес исследователей концентрируется на изучении особенностей поведения соединений вблизи квантовых критических точек (ККТ), в которых при изменении внешнего управляющего параметра (давление, магнитное поле, состав) наблюдаются фазовые переходы при нулевой температуре [1,2]. Наиболее известной и хорошо изученной системой с квантовым критическим поведением являются твердые растворы замещения $\mathrm{CeCu}_{6-x}\mathrm{Au}_x$, где вблизи $x\approx 0.1$ регистрируется антиферромагнитная (АФ) ККТ (температура Нееля $T_N = 0$) с необычным поведением физических характеристик. В частности, в CeCu_{5.9}Au_{0.1} наблюдаются логарифмическая расходимость электронной теплоемкости $(C/T \sim \ln T)$, нефермижидкостное поведение удельного сопротивления ($\rho \sim T$), а также отличная от кюри-вейссовской степенная зависимость магнитной восприимчивости $(\chi \sim T^{-0.8})$ [3,4]. Исследования, выполненные методом неупругого рассеяния нейтронов, привели авторов [5] к выводу о понижении размерности спектра магнитных возбуждений вблизи ККТ в CeCu_{5.9}Au_{0.1}. Аналогичный квазидвумерный характер спектра спиновых флуктуаций был обнаружен в [6] для YbB₁₂, - соединения с промежуточной валентностью ($u({
m Yb}) \approx 2.95$ [7,8]), располагающегося в ряду редкоземельных (РЗ) додека-

боридов между антиферромагнетиком ${\rm Tm}{\rm B}_{12}$ ($T_N pprox$ 3.2 К) [9] и сверхпроводником LuB₁₂ [10]. Комплексное исследование твердых растворов замещения Tm_{1-x}Yb_xB₁₂ [11] позволило сделать вывод о развитии неустойчивости АФ состояния и возникновении ККТ $(T_N = 0)$ вблизи $x \sim 0.3$ при приближении к состоянию с нестабильной 4f-оболочкой P3 иона (см. вставку на рис.1). Учитывая отмеченную выше аналогию с системой $\operatorname{CeCu}_{6-x}\operatorname{Au}_x$, интересно детально исследовать поведение теплоемкости $C_p(T)$ для составов $\mathrm{Tm}_{1-x}\mathrm{Yb}_{x}\mathrm{B}_{12},$ отвечающих непосредственной окрестности ККТ (x ~ 0.3). Поскольку магнитное поле является одним из управляющих параметров в квантовой критической области [1-5], представляется целесообразным также проведение измерений $C_{p}(T)$ в сильных магнитных полях.

2. В работе выполнено исследование поведения теплоемкости соединения $Tm_{0.74}Yb_{0.26}B_{12}$, располагающегося в непосредственной окрестности ККТ системы $Tm_{1-x}Yb_xB_{12}$ ($x \sim 0.3$). Измерения проведены на монокристаллических образцах высокого качества в широком диапазоне температур 1.9–300 К в магнитном поле до 9 Тл на установке PPMS-9 компании Quantum Design (США). Для сравнения нами исследовались также монокристаллические образцы додекаборидов тулия (TmB_{12}) и лютеция (LuB_{12}). Монокристаллы для измерений были выращены методом вертикального бестигельного индукционного зонного плавления в атмосфере инертного газа [12].

¹⁾e-mail: nes@lt.gpi.ru

²⁾S. Gabani, K. Flachbart.

Рис.1. Температурные зависимости теплоемкости додекаборидов $Tm_{1-x}Yb_xB_{12}$ (x = 1 и 0.74) и LuB₁₂ в отсутствие внешнего магнитного поля. На вставках показаны магнитная фазовая диаграмма твердых растворов $Tm_{1-x}Yb_xB_{12}$ с квантовой критической точкой (QCP) вблизи x = 0.3 (AF-антиферромагнетик, Pпарамагнетик), а также схема расщепления кристаллическим полем ³H₆ состояния тулия (см. текст)

3. На рис.1 представлена температурная зависимость теплоемкости для состава $Tm_{0.74}Yb_{0.26}B_{12}$ вблизи ККТ вместе с кривыми $C_p(T)$, измеренными для додекаборидов TmB₁₂ и LuB₁₂. Последнее соединение с заполненной 4f-оболочкой $(4f^{14})$ редкоземельного иона является немагнитным аналогом твердого раствора $\mathrm{Tm}_{0.74}\mathrm{Yb}_{0.26}\mathrm{B}_{12}$ и используется в работе для оценки суммарного электронного и решеточного вкладов в теплоемкость $C_0(T)$ в рамках процедуры, предложенной для учета перенормировки температуры Дебая в многокомпонентных изоструктурных соединениях [13]. В рамках подхода [13] были рассчитаны коэффициенты k_D для ${
m TmB}_{12}$ и Tm_{0.74}Yb_{0.26}B₁₂ (0.985 и 0.988 соответственно), что позволило определить величину немагнитного вклада $C_0(T) = C_p^{\operatorname{LuB12}}(T/k_D)$ для обоих соединений.

На рис.2 представлены температурные зависимости магнитного вклада в теплоемкость $C_{\rm mag}(T) = C_p(T) - C_0(T)$ соединения ${\rm Tm}_{0.74}{\rm Yb}_{0.26}{\rm B}_{12}$, полученные в отсутствие внешнего магнитного поля (нижняя кривая) и в полях с индукцией $\mu_0 H = 3$, 6 и 9 Тл. Перестроение полученных данных в координатах $C_{\rm mag}/T = f(\ln T)$ (вставка на рис.3) показывает, что при T < 4 К на кривой магнитного вклада, действительно, наблюдается близкий к линейному учас-

Рис.2. Температурные зависимости магнитного вклада в теплоемкость $C_{mag}(T)$ додекаборида $Tm_{0.74}Yb_{0.26}B_{12}$ во внешнем магнитном поле до 9 Тл. Линиями показан результат аппроксимации кривых $C_{mag}(T)$ в рамках соотношений (1), (2). На вставке представлено изменение величины зеемановского расщепления (Δ_{01} , Δ_{02}) $\Gamma_5^{(1)}$ триплета ³ H₆ состояния тулия во внешнем магнитном поле (см. текст)

ток роста электронной теплоемкости, который может быть сопоставлен с квантовым критическим поведением в $Tm_{0.74}Yb_{0.26}B_{12}$. Отметим, что для соединения в ККТ $CeCu_{5.9}Au_{0.1}$ внешнее магнитное поле с индукцией $\mu_0 H \geq 3$ Тл полностью подавляет квантовый критический режим [3]. В случае $Tm_{0.74}Yb_{0.26}B_{12}$ введение внешнего магнитного поля с индукцией до 9 Тл приводит к появлению на зависимости $C_{mag}(T)$ аномалии в виде максимума, смещающегося с ростом магнитного поля в сторону высоких температур (рис.2).

Температурное изменение магнитной энтропии $S_{\rm mag}(T) = \int (C_{\rm mag}/T) dT$, приведенное к концентрации ионов Tm в соединении ${\rm Tm}_{0.74}{\rm Yb}_{0.26}{\rm B}_{12}$, в магнитном поле с индукцией $\mu_0 H = 0$, 3, 6 и 9 Tл представлено на рис.3 вместе с зависимостью $S_{\rm mag}(T)$ соединения TmB₁₂. Как видно из данных рис.3, в интервале между температурой Нееля $T_N({\rm TmB}_{12}) \approx 3.2 \,{\rm K}$ и $T \approx 20 \,{\rm K}$ изменение энтропии состава Tm_{0.74}Yb_{0.26}B₁₂ в отсутствие внешнего магнитного поля достаточно точно определяется поведением $S_{\rm mag}(T)$ додекаборида тулия. С ростом внешнего магнитного поля до 9 Tл в интервале температур $T < 20 \,{\rm K}$ происходит резкое подавление магнитного вклада в энтропию, причем выход

Рис.3. Температурные зависимости магнитного вклада в энтропию $S_{mag}(T)$, нормированного на концентрацию тулия, для состава $Tm_{0.74}Yb_{0.26}B_{12}$ во внешнем магнитном поле до 9 Тл и додекаборида TmB_{12} . На вставке в логарифмических координатах показан низкотемпературный участок зависимости магнитного вклада в теплоемкость $C_{mag}(T)/T$

на значение $R \ln 3$ (горизонтальная пунктирная прямая на рис.3), отвечающее триплетному состоянию $\Gamma_5^{(1)}$ в $\mathrm{Tm}_{1-x}\mathrm{Yb}_x\mathrm{B}_{12}$, достигается при температурах 15–20 К, значительно превышающих $T_N \approx 3.2 \,\mathrm{K}$ в TmB_{12} .

Сопоставление полученных данных (рис.2, 3) с результатами предварительных исследований теплоемкости TmB₁₂ в магнитном поле свидетельствует об определяющей роли зеемановского расщепления триплета $\Gamma_5^{(1)}$, являющегося основным состоянием ³H₆ мультиплета тулия, в формировании аномалии Шоттки на кривых $C_{\rm mag}(T)$ соединения Tm_{0.74}Yb_{0.26}B₁₂. Численный анализ магнитного вклада в теплоемкость Tm_{0.74}Yb_{0.26}B₁₂ $C_{\rm mag}(T)$ проводился нами в рамках стандартной процедуры, определяемой соотношениями

$$C_{\rm mag} = -T \left(\frac{\partial^2 F}{\partial T^2} \right) = \frac{R}{k_B^2 T^2} \left(\langle \Delta^2 \rangle - \langle \Delta \rangle^2 \right), \quad (1)$$

$$\langle \Delta \rangle = \frac{\sum\limits_{i=0}^{n} f_i \Delta_i \exp(-\Delta_i/k_B T)}{\sum\limits_{i=0}^{n} f_i \exp(-\Delta_i/k_B T)},$$
(2)

где Δ_i – энергия *i*-го возбужденного состояния мультиплета ${}^{3}\mathrm{H}_{6}$ иона Tm^{3+}, f_i – кратность вырождения, F – свободная энергия, R – газовая постоянная. При

Письма в ЖЭТФ том 91 вып. 1-2 2010

расчетах магнитного вклада $C_{\text{mag}}(T, H_0)$ все возбужденные состояния мультиплета ${}^{3}\text{H}_{6}$ учитывались в соответствии со схемой расщепления в кристаллическом поле ${}^{3}\text{H}_{6}$ -состояния тулия [14-16] (см. вставку на рис.1).

Результат аппроксимации экспериментальных данных $C_{\rm mag}(T,{
m H}_0),$ представленный линиями на рис.2, показывает, что анализ в рамках соотношений (1), (2) обеспечивает достаточно хорошее приближение в температурном интервале $T < 30 \, {
m K}$ в магнитном поле с индукцией $\mu_0 H \ge 3$ Тл. Значительное отклонение магнитного вклада $C_{\mathrm{mag}}(T)$ в отсутствие внешнего магнитного поля (нижняя кривая на рис.2) обычно связывается с особенностями квантового критического режима и, в частности, с расходимостью электронной теплоемкости, возникающей вследствие расходимости эффективной массы квазичастиц вблизи ККТ. При этом подавление квантового критического режима в сильном магнитном поле $\mu_0 H \geq 3$ Тл представляется обусловленным магнитной поляризацией ЛММ РЗ ионов и спинов зонных носителей, препятствующей формированию многочастичных состояний в режиме локальных 4f-5*d*-спиновых флуктуаций. В свою очередь, низкую точность аппроксимации $C_{\rm mag}(T,H_0)$ соотношениями (1), (2) в температурном интервале $T \gtrsim 30 \, {
m K},$ по нашему мнению, следует связать с обнаруженной для LuB₁₂ низкочастотной эйнштейновской модой $(\Theta_{E0} \approx 58 \, \mathrm{K} \, [14]),$ вклад в теплоемкость от которой, по-видимому, значительно усиливается в магнитных додекаборидах системы $Tm_{1-x}Yb_xB_{12}$.

В используемом нами приближении (1), (2) найденная величина зеемановского расщепления $\Delta_{0i} =$ $= \mu_{\text{eff}} H \Gamma_5^{(1)}$ -состояния тулия позволяет получить оценку значения эффективного магнитного момента μ_{eff} , который для состояний Δ_{01} и Δ_{02} оказывается равным $2.82 \mu_{\rm B}$ и $4.8 \mu_{\rm B}$, соответственно (см. вставку на рис.2). Отметим, что определенные из зависимостей $\Delta_{0i}(H)$ значения $\mu_{ ext{eff}}$ заметно отличаются от расчетных для состояний $\Gamma_5^{(1)}$ триплета, которые составляют $\Delta_{01} = 1.15 \mu_{\rm B}$ и $\Delta_{02} = 6.65 \mu_{\rm B}$. Указанные отличия, по-видимому, могут быть связаны с уширением и перекрытием уровней $\Gamma_5^{(1)}$ триплета вследствие эффектов гибридизации электронных состояний РЗ ионов. Отметим также, что аппроксимация кривой $C_{\text{mag}}(T, H_0 = 0)$ соотношениями (1), (2) указывает на необходимость учета снятия вырождения $\Gamma_5^{(1)}$ триплета в отсутствие внешнего магнитного поля (обменное расщепление). При этом полученное нами значение $\Delta_{02} \approx 4.5 \, {
m K}$ (см. вставку на рис.2) в пределах экспериментальной точности соответствует величине расщепления основного состояния иона ${
m Tm}^{3+}~\Delta_0 \approx 6\pm 2$ К, определенной в экспериментах по эффекту Мессбауэра для ${
m TmB}_{12}~[17].$

4. Выполненное исследование теплоемкости соединения $\operatorname{Tm}_{0.74}\operatorname{Yb}_{0.26}\operatorname{B}_{12}$ вблизи ККТ в ряду $\operatorname{Tm}_{1-x}\operatorname{Yb}_x\operatorname{B}_{12}$ позволяет обнаружить возрастание магнитного вклада $C_{\mathrm{mag}}(T)$, которое в интервале $T < 4\,\mathrm{K}$ может быть описано логарифмической зависимостью вида $C_{\mathrm{mag}}/T \sim \ln T$. Внешнее магнитное поле $\mu_0 H \geq 3\,\mathrm{Tn}$ подавляет указанный режим квантового критического поведения. Результаты анализа аномалии Шоттки теплоемкости и магнитного вклада в энтропию в $\operatorname{Tm}_{0.74}\operatorname{Yb}_{0.26}\operatorname{B}_{12}$ свидетельствуют об определяющей роли тулиевой подсистемы в формировании особенностей поведения тепловых свойств в ряду $\operatorname{Tm}_{1-x}\operatorname{Yb}_x\operatorname{B}_{12}$ с $x \leq 0.3$.

Авторы выражают признательность В.М. Пудалову, К.В. Мицену, О.Е. Омельяновскому и Г.Е. Гречневу за полезные обсуждения. Работа выполнена при финансовой поддержке программы ОФН РАН "Сильнокоррелированные электроны в металлах, полупроводниках и магнитных материалах", программы фундаментальных исследований Президиума РАН "Квантовая физика конденсированных сред", программы сотрудничества между РАН и САН и проекта Российского фонда фундаментальных исследований.

- G. S. Stewart, Rev. Mod. Phys. 78, 743 (2006); Rev. Mod. Phys. 73, 797 (2001).
- 2. С.М.Стишов, УФН 174, 853 (2004).

- 3. H. von Lohneysen, J. Phys. Cond. Mat. 8, 4889 (1996).
- A. Schroder, G. Aeppli, R. Coldea et al., Nature 407, 351 (2000).
- O. Stockert, H. von Lohneysen, A. Rosch et al., Phys. Rev. Lett. 80, 5627 (1998).
- K. S. Nemkovski, J. M. Mignot, P. A. Alekseev et al., Phys. Rev. Lett. 99, 137204 (2007).
- F. Iga, Y. Takakuwa, T. Takahashi et al., Sol. St. Commun. 50, 903 (1984).
- F. Iga, N. Shimizu, and T. Takabatake, J. Magn. Magn. Mat. 177-181, 337 (1998).
- S. Gabani, I. Bat'ko, K. Flachbart et al., J. Magn. Magn. Mat. 207, 131 (1999).
- K. Flachbart, S. Gabani, K. Gloos et al., J. Low Temp. Phys. 140, 339 (2005).
- Н.Е. Случанко, А.В. Богач, В.В. Глушков и др., Письма в ЖЭТФ 89, 298 (2009).
- Yu. Paderno, V. Filippov, and N. Shitsevalova, in: Eds. D. Emin, T. L. Aselage et al., Boron-Rich Solids, AIP Conference Proc. 230, Albuquerque, 1991, p. 460.
- M. Bouvier, P. Lethuillier, and D. Schmitt, Phys. Rev. B 43, 13137 (1991).
- A. Czopnik, N. Shitsevalova, V. Pluzhnikov et al., J. Phys.: Cond. Mat. 17, 5971 (2005).
- A. Czopnik, N. Shitsevalova, A. Krivchikov et al., J. Sol. St. Chem. 177, 507 (2004).
- A. Murasik, A. Czopnik, N. Shitsevalova et al., in: IAE Annual Report 1999, Otwock-Swierk, Poland, 1999, p.69.
- P. C. M.Gubbens, A. M. van der Kraan, and K. H. J. Buschow, Physica B 130, 412 (1985).