Оптические спектры нанокерамик железо-иттриевого граната Y₃Fe₅O₁₂, полученных методом интенсивной пластической деформации

А.А. Махнёв¹⁾, Б.А.Гижевский, Л.В. Номерованная

Институт физики металлов РАН, 620041 Екатеринбург, Россия

Поступила в редакцию 3 декабря 2009 г.

Представлены результаты исследования методом спектроскопической эллипсометрии особенностей оптических свойств наноструктурных образцов железо-иттриевого граната Y₃Fe₅O₁₂ (YIG) в диапазоне 0.5–4.7 эВ, включающем как область фундаментального поглощения, так и низкоэнергетические электронные возбуждения. Результаты обсуждаются в сопоставлении с данными измерений монокристалла YIG. Обнаружено принципиальное отличие дисперсии оптических функций в наноструктурных образцах по сравнению с монокристаллом, проявившееся в перераспределении спектральной плотности из области энергий выше фундаментального края поглощения в область ниже края. Показано, что энергетическое положение основных электронных переходов в наноструктурных образцах в сравнении с монокристаллом в целом сохраняется, в то же время происходит усиление интенсивности низкоэнергетических переходов. Обсуждаются возможные причины усиления и разрешения тонкой структуры поглощения в зонной щели наноструктурного Y₃Fe₅O₁₂.

1. В настоящее время большой научный и практический интерес представляет изучение оптических и магнитооптических свойств магнитных оксидных материалов в наноструктурном состоянии. В частности, интерес к наноструктурным ферритам связан с возможностью их использования в лазерной технике, покрытиях, нанокомпозитах [1-3]. В работе [4] сообщалось об обнаружении ферроэлектрического эффекта в дефектных образцах железо-иттриевого граната Y₃Fe₅O₁₂ (YIG). Наноструктурные образцы YIG, получаемые неравновесными методами, также могут иметь высокий уровень дефектов (дефекты на поверхности и в объеме кристаллитов, вакансии по катионной и кислородной подрешетках) и, следовательно, обнаруживать неожиданное поведение физических свойств. Следует отметить, что в литературе практически отсутствуют работы, посвященные изучению особенностей электронной структуры нанооксидов, и это осложняет интерпретацию физических свойств оксидных наноматериалов и, в целом, понимание природы наносостояния. Оптическая спектроскопия является эффективным способом изучения электронной структуры материалов, тем не менее, она слабо используется в исследованиях наноматериалов. Поэтому представляется своевременным использовать оптические методы, в частности, эллипсометрию в широкой спектральной области для исследования фундаментальных характеристик элек-

2. Оптические свойства YIG (ферримагнетик с $T_N = 555 \, {
m K}$) хорошо изучены на объемных монокристаллах и эпитаксиальных пленках как в области фундаментального поглощения E > 2.6 эВ, так и в области относительно высокой прозрачности (0.15-1.24 эВ) [5-8]. Кристаллическая решетка соединения (пр. группа O_h^{10} - $Ia\bar{3}d$) имеет две неэквивалентные (окта- и тетраэдрические) позиции, заполненные ионами Fe³⁺ в соотношении 2:3, что приводит к сложности оптического спектра. Традиционно анализ богатой тонкой структуры на фоне широких интенсивных полос фундаментального поглощения, а также особенностей вблизи и ниже фундаментального края проводят в рамках теории кристаллического поля. Авторы работы [8] предложили зонную модель, предполагая присутствие локализованных Fe(3d) мультиплетных состояний, расщепленных окта- и тетраэдрическими кристаллическими полями в запрещенной щели выше вершины O(2p) зоны. К настоящему времени выполнен первопринципный расчет электронной структуры и оптических свойств в приближении локальной плотности с учетом одноузельного кулоновского взаимодействия LSDA + U [9], согласно которому соединение YIG является изолятором с переносом заряда (край фундаментального поглоще-

тронной структуры и специфики низкоэнергетических оптических возбуждений $Y_3Fe_5O_{12}$ в наноструктурном состоянии, а также проследить их изменение в зависимости от технологических параметров получаемых образцов.

¹⁾e-mail: almakhnev@imp.uran.ru

ния формируется переходами O(2p)-Fe(3d)) с зонной щелью ~ 2.66 эВ, близкой к экспериментальному значению [10].

В настоящей работе выполнено исследование электронной структуры наноструктурных образцов YIG методом спектроскопической эллипсометрии в диапазоне 0.5-4.7 эВ. Основное внимание уделено сравнению особенностей дисперсии оптических функций наноструктурных образцов с таковыми для монокристалла.

3. Измерения оптических постоянных показателей преломления *n* и поглощения *k* выполнены методом Битти при комнатной температуре на автоматизированном эллипсометре, собранном на базе вычислительного комплекса КСВУ-12 и угле падения света на образец 67° с погрешностью 2-4%. По значениям nи k рассчитаны действительная, $\epsilon_1 = n^2 - k^2$, и мнимая, $\epsilon_2 = 2nk$, части комплексной диэлектрической проницаемости и действительная часть комплексной оптической проводимости $\sigma = nk\omega/2\pi$ (ω – циклическая частота световой волны). Наноструктурные высокоплотные образцы YIG приготовлены способом кручения под давлением из крупнозернистого порошка YIG и аттестованы рентгеноструктурным методом [11]. Образец №1 подвергался только сжатию давлением 10 ГПа без вращения наковален и поэтому наименее деформирован. Степень деформации сдвига образцов № 2 и № 3 пропорциональна углу поворота наковален (соответственно, $\varphi = 20^{\circ}$ и 360°). Размеры кристаллитов составляли ∼40 нм для образца №1 и ~ 20 нм для остальных. Несмотря на близость размеров кристаллитов, увеличение степени деформации, по нашему мнению, приводит к росту концентрации точечных и иных дефектов [11].

4. На рис.1 приведена дисперсия действительной и мнимой частей комплексной диэлектрической проницаемости монокристалла и наноструктурных образцов YIG. Спектральные зависимости оптической проводимости приведены на рис.2. Обратимся, прежде всего, к спектрам монокристалла. Для монокристалла YIG выше фундаментального края спектры $\epsilon_2(E)$ и $\sigma(E)$ имеют высокую интенсивность. Энергетическое положение основных особенностей межзонного поглощения (при ~ 2.8 , ~ 3.4 , ~ 3.8 и ~ 4.3 эВ) совпадает с полученными ранее данными [5-8]. Принимая во внимание расчеты зонного спектра и диэлектрических функций YIG [9], интенсивная широкая полоса поглощения при 3-5 эВ формируется электронными переходами из состояний O(2p) в состояния Fe(3d) и Y(4d, 5s). Как и во многих ферритах, край фундаментального поглощения в YIG не ярко выражен (увеличение поглощения на порядок проис-

Рис.1. Спектры действительной $\epsilon_1(E)$ (а) и мнимой $\epsilon_2(E)$ (b) частей комплексной диэлектрической проницаемости наноструктурных образцов Y_3 Fe₅O₁₂ (№ 1, № 2, № 3) и монокристалла (кривая 4)

ходит в широком интервале от 2 до 3 эВ), в формировании края принимает участие несколько интенсивных электронных переходов. Заслуживает особого внимания факт, что в области спектра вблизи и ниже фундаментального края при использовании эллипсометрического метода выявлены особенности, отчетливо проявившиеся на кривой диэлектрической функции $\epsilon_2(E)$: широкая площадка с центром при ~ 2.2 эВ, полосы с центром при 1.7 зВ, ~ 1.3 зВ и ~ 1.0 эВ. В нанострутурных образцах дополнительно проявляется также полоса при 0.6 эВ. Ранее эти полосы были разрешены лишь при измерении пропускания и в модуляционных спектрах. Полосы при 1.0 и 0.6 эВ в номинально чистых образцах YIG не наблюдались. Отметим, что хотя в зонный расчет электронной структуры YIG [9] были включены эффекты внутриатомных корреляций, теоретический спектр $\epsilon_2(E)$, в отличие от экспериментального, не показал

Письма в ЖЭТФ том 91 вып. 1-2 2010

Рис.2. Спектры оптической проводимости $\sigma(E)$ наноструктурных образцов Y_3 Fe₅O₁₂ (№ 1, № 2, № 3) и монокристалла (кривая 4). На вставке – спектры показателей преломления n(E) и поглощения k(E)

присутствия вклада от локализованных состояний ни в щели, ни вблизи фундаментального края. Известно, что оптические переходы в интервале энергий вблизи и ниже 1 эВ связывают с наличием ионов ${
m Fe}^{2+}$ и ${
m Fe}^{4+}$ при легировании или нарушении стехиометрии YIG [12, 13]. Поэтому мы полагаем, что в наших образцах присутствуют ионы Fe с валентностью, отличной от 3+. Появление этих ионов, возможно, связано с нарушением стехиометрии под действием интенсивных пластических деформаций. Концентрация таких ионов возрастает с увеличением степени деформации. Ранее изменение валентности катионов при деформациях сдвига наблюдалось в оксиде CuO и YIG, приготовленных размолом в шаровой мельнице [14, 15]. Обратим также внимание на работу [16], где показано, что даже в монокристаллах YIG до 10% атомов иттрия могут находиться в окта- и тетра-позициях иона Fe³⁺ и наоборот. Такой обмен приводит к понижению симметрии от Ia3d до R3 без изменения центра инверсии и, возможно, является внутренней характеристикой гранатов.

Присутствие антиструктурных ионов Y^{3+} на местах Fe^{3+} было зафиксировано на высокочистом монокристалле в спектрах ЯМР [17]. Возможно, что особенности поглощения ниже 2.8 эВ в наших наноструктурных образцах обусловлены присутствием антиструктурных ионов иттрия. Любое нарушение трансляционной симметрии может привести к появлению электронных состояний в щели изолятора. Имеется и другое мнение о природе внутрищелевых электронных состояний номинально чистых монокристаллов. Обнаружение в ферритах бесструктурного или разрешаемого на несколько подполос оптического поглоще-

Письма в ЖЭТФ том 91 вып. 1-2 2010

ния ниже фундаментального края связывают с нестабильностью *p*-*d*-переходов из-за самозахвата экситонов и образования электронно-дырочных капель [18]. Следует также иметь в виду напряженное состояние поверхности наших образцов, что может приводить к некоторым искажениям спектров.

В наноструктурных образцах YIG спектральный профиль оптических функций существенно отличается от монокристалла. Во-первых, численные значения ϵ_2 и σ в области фундаментального поглощения значительно понижены и, напротив, в спектральной области ниже края принимают существенно более высокие значения. Обнаруженное в наноструктурных YIG перераспределение спектральной плотности электронных переходов от высоких энергий E > 3.0 эВ в область E < 3.0 эВ обусловлено дисперсией показателя поглощения k(E) (рис.2, вставка). Во-вторых, для образца №1 (сдвиговая деформация отсутствует) спектры $\epsilon_2(E)$ и $\sigma(E)$ хотя и проявляют особенности, энергетическое положение которых близко к наблюдаемому в монокристалле как в области выше фундаментального края, так и ниже, но обнаруживают заметно лучшее разрешение и некоторое смещение в низкоэнергетическую область спектра (рис.1b и 2). Так, затянутый спад оптических функций $\epsilon_2(E)$ и $\sigma(E)$ для низкоэнергетического крыла полосы поглощения при E < 2.8 эВ, наблюдаемый в монокристалле, для образца №1 оказался разрешенным на несколько слабых пиков (на кривой функции $\epsilon_2(E)$: 1.8, 2.15, 2.5, 2.7 эВ). Кроме того, энергетическое положение последнего пика (2.7 эВ) для образца № 1, возможно, отражает незначительное (на ~0.1 эВ) смещение края поглощения с переносом заряда по сравнению с монокристаллом. Аналогичное поведение на этих же образцах было отмечено при исследовании магнитооптического эффекта Керра [11]. Что касается особенностей при более низких энергиях (пики при 1.3, 1.0 и 0.6 эВ), то кажется удивительным, что они более отчетливо, чем в монокристалле, проявились в наноструктурном образце №1 в эллипсометрических измерениях. Причиной такого высвечивания электронных переходов в окне прозрачности YIG является увеличение численных значений функции k(E) из-за рассеяния на наночастицах и возрастание числа дефектов. При приложении сдвиговой деформации и увеличении ее степени (образцы № 2 и № 3) происходит дальнейшее достаточно резкое возрастание абсолютных значений показателя поглощения k(E) (также ϵ_2 и σ) в спектральной области ниже фундаментального края поглощения. Это обстоятельство не только не приводит к увеличению отражательной способности, а напротив, к понижению ее, что связано с одновременным уменьшением показателя преломления n(E) (в качестве примера дана вставка на рис.2). При увеличении сдвиговой деформации наблюдается размытие и незначительное смещение, но не исчезновение, структур в спектрах оптических функций, что может быть связано с повышением дефектности. Таким образом, из сопоставления дисперсии оптических функций наноструктурных образцов YIG и монокристалла видно, что при значительном перераспределении оптического спектрального веса все основные переходы в nano-YIG сохраняются, и вместе с этим в низкоэнергетической области проявляются сравнительно слабые переходы, связанные со специфической дефектностью нанооксидов.

5. Можно было ожидать, что наноструктурное состояние приведет к значительному уширению тонкой структуры оптических спектров или к бесструктурному поглощению ниже фундаментального края. Однако, напротив, в изученных нами наноструктурных образцах YIG вблизи и ниже края обнаружено возрастание интенсивности поглощения и разрешение тонкой структуры, обусловленное увеличением численных значений показателя поглощения k. Эффект высвечивания реальных электронных переходов в образцах nano-YIG, полученных методом деформации под давлением, может быть связан с увеличением числа точечных дефектов, появлением вакансий и антиструктурных ионов, изменением валентности железа, но также с усилением вероятности оптических переходов вследствие понижения локальной симметрии и снятия ограничения на правила отбора. В целом, в работе продемонстрирована эффективность метода эллипсометрии в исследовании электронной структуры наноструктурных оксидов. Выявлены существенные особенности спектров оптических функций nano-YIG в сравнении с монокристаллом, связанные с перераспределением оптического спектрального веса из высокоэнергетической области в низкоэнергетическую. В области энергий ниже края фундаментального поглощения в nano-YIG обнаружены электронные переходы, связанные со специфической дефектностью наноструктурных образцов YIG. Выявлены особенности электронной структуры образцов nano-YIG в широкой области энергий при различных степенях деформации и примерно одинаковых размерах кристаллитов.

Работа поддержана Российским фондом фундаментальных исследований, проекты #08-03-99071офи, #10-02-0050, программой ОФН РАН "Физика новых материалов и структур", интеграционным проектом УрО РАН и СО РАН.

- A. J. Lu, K. Ueda, H. Yagi et al., J. Alloys Compounds 341, 220 (2002).
- J. W. Lee, J. H. Oh, J. C. Lee et al., J. Magn. Magn. Mater 272-276, 2230 (2004).
- X. Z. Guo, B. G. Ravi, Q. Y. Yan et al., Ceramic International 32, 61 (2006).
- E. Kita, S. Takano, K. Kohn et al., J. Magn. Magn. Mater 104-107, 499 (1992).
- D. L. Wood and J. P. Remeika, J. Appl. Phys. 38, 1038 (1967).
- S. Wittekoek, T.J.A. Popma, J.M. Robertson et al., Phys. Rev. B 12, 2777 (1975).
- G. B. Scott, D. E. Lacklison, and J. L. Page, Phys. Rev. B 10, 97 (1974).
- S. H. Wemple, S. L. Blank, J. A. Seman et al., Phys. Rev. B 9, 2134 (1974).
- W.Y. Ching, Zong-quan Gu, and Yong-Nian Xu, J. Appl. Phys. 89, 6883 (2001).
- A. G. Gavriliuk, V. V. Struzhkin, I.S. Lyubutin et al., JETF Letters 82, 603 (2005).
- Б. А. Гижевский, Ю. П. Сухоруков, Е. А. Ганьшина и др., ФТТ 59, 1729 (2009).
- F. Lucari, C. Mastrogiuseppe, E. Terrenzio et al., J. Magn. Magn. Mater 20, 84 (1980).
- Z. V. Gareyeva and R. A. Doroshenko, J. Magn. Magn. Mater 268, 1 (2004).
- D. A. Zatsepin, V. R. Galakhov, B. A. Gizhevskii et al., Phys. Rev. B 59, 211 (1999).
- R. J. Joseyphus, A. Narayanasamy, A. K. Nigam et al., J. Magn. Magn. Mater 296, 57 (2006).
- 16. J. Dong and K. Lu, Phys. Rev. B 43, 8808 (1991).
- P. Novak, J. Englich, H. Stepankova et al., Phys. Rev. Lett. **75**, 545 (1995).
- R. V. Pisarev, A.S. Moskvin, A. M. Kalashnikova et al., Phys. Rev. B **79**, 235128 (2009).