Неньютоновская динамика быстрого движения магнитного вихря

Б. А. Иванов^{+*1)}, Г. Г. Аванесян $^{\nabla}$, А. В. Хвальковский $^{\nabla 2)}$, Н. Е. Кулагин $^{\Box}$, К. Э. Заспел $^{\Delta 2)}$, К. А. Звездин $^{\nabla}$

+Институт магнетизма НАН Украины, 03142 Киев, Украина

*Киевский университет им. Тараса Шевченко, 03127 Киев, Украина

[▽] Учреждение Российской академии наук, Институт общей физики им. А.М.Прохорова РАН, 119991 Москва, Россия

□Государственный университет управления, 109542 Москва, Россия

^Δ Department of Environmental Sciences, University of Montana-Western, Dillon MT 59725, USA

Поступила в редакцию 11 января 2010 г.

Рассматривается динамика магнитного вихря в тонком диске субмикронного диаметра, сделанном из магнитомягкого ферромагнетика. Под действием импульсов поля длительностью порядка 10–100 пс, вихрь приходит в сложное движение. Анализ результатов микромагнитного моделирования показывает, что это движение имеет неньютоновский характер. Оно может быть описано с помощью уравнения, содержащего третью производную от смещения центра вихря по времени.

В последние годы широко исследуются свойства субмикронных магнитных частиц в форме диска, сделанных из магнитомягких материалов на немагнитной подложке (магнитных наноточек) [1]. Для таких систем основным состоянием может быть магнитный вихрь. Энергетическая выгодность вихрей определяется тем, что вихревые конфигурации намагниченности, за исключением малой области вихревого кора, не создают размагничивающего поля [1]. Ожидается, что использование упорядоченных плотноупакованных массивов таких частиц позволит создать новое поколение устройств записи и обработки информации [2]. Переключение таких элементов включает сверхбыстрые (за времена порядка десятков пикосекунд) процессы движения вихревого кора [3]. Под действием спин-поляризованного тока вихрь может прийти в круговое движение большой амплитуды, что можно использовать для создания наноразмерных генераторов, излучающих в диапазоне 0.2-2 ГГц [4, 5]. При превышении некоторого порогового значения тока в таких системах также наблюдается возбуждение сверхбыстрой динимики вихря [6-8]. Благодаря этим обстоятельствам, в последние несколько лет значительно вырос интерес к исследованию быстрой динамики магнитных вихрей.

В то же время, вихри как топологически нетривиальные распределения намагниченности представляют интерес для фундаментальной физики магнетизма. Интерес к магнитным вихрям возник в 70-х годах 20-го столетия, когда стало понято, что в двумерных легкоплоскостных магнетиках вихри (или связанные вихревые пары) играют роль нелинейных (солитонных) элементарных возбуждений и разрыв вихревых пар приводит к фазовому переходу Березинского-Костерлица-Таулесса [9, 10], см. также недавний обзор [11].

Исследования показали наличие нетривиальных динамических свойств магнитных вихрей, см. обзор [12]. В простейшем приближении движение координаты центра вихря Х является гироскопическим и описывается уравнением ($\mathbf{G} \times d\mathbf{X}/dt$) = **F**, где гировектор $\mathbf{G} = G \mathbf{e}_z$ направлен перпендикулярно плоскости магнетика, G - гироскопическая константа, F - внешняя сила, действующая на вихрь [13] (в физике магнитных вихрей это уравнение называют уравнением Тиля). При учете потенциальной силы, действующей на вихрь в частице круговой формы, $\mathbf{F} = -\partial W(|\mathbf{X}|)/\partial \mathbf{X} = -\kappa(|\mathbf{X}|)\mathbf{X}, W(\mathbf{X}) - \kappa(|\mathbf{X}|)\mathbf{X}$ потенциальная энергия вихря, зависимость коэффициента возвращающей силы $\kappa(|\mathbf{X}|)$ от $|\mathbf{X}|$ определяет нелинейность системы. Решение этого уравнения определяет круговое движение вихря с частотой $\omega_0(|\mathbf{X}|) = \kappa(|\mathbf{X}|)/G$, в линейном приближении $\omega_0 = \kappa/G$, где $\kappa = \kappa(|\mathbf{X}| \to 0)$. Однако численное моделирование динамики вихря для больших решеточных систем легкоплоскостных магнетиков показало, что траектория свободного движения вихря не является круговой и включает высокочастотные осцилляции на фоне медленного гироскопического движения. Для описания этих данных было предложено феноменологическое уравнение для Х третьего порядка по времени [14]. Это уравнение, помимо гироскопического слагаемого, содержит еще и инерционный член

¹⁾e-mail: bivanov@i.com.ua

²⁾ A.V. Khvalkovskiy, C.E. Zaspel.

с массой *M*, а также высшее гироскопическое слагаемое с третьей производной от **X** по времени,

$$G_3\left(\mathbf{e}_z \times \frac{d^3\mathbf{X}}{dt^3}\right) + M\frac{d^2\mathbf{X}}{dt^2} + G\left(\mathbf{e}_z \times \frac{d\mathbf{X}}{dt}\right) = \mathbf{F}.$$
 (1)

Общее решение этого уравнения построить не удается. Однако важные особенности динамики таких систем обнаруживаются при анализе его линеаризованной версии, когда сила имеет вид $\mathbf{F} = -\kappa \mathbf{X}$. Для малых смещений вихря \mathbf{X} его решением являются три нормальных колебания вида $A_{\alpha} = a_{\alpha} \exp(i\omega_{\alpha}t)$, A = X + iY; частоты этих малых колебаний ω_{α} могут быть выражены аналитически через G_3 , M, G и κ . Анализ численных данных показал, что одна из этих частот существенно меньше остальных двух, она совпадает с введенной выше частотой ω_0 , а остальные две имеют различные знаки, обозначим их $-\omega_1$ и ω_2 , $\omega_0 \ll \omega_1 \simeq \omega_2$. Используя неравенства $\omega_0 \sim \Delta \omega \ll \bar{\omega}$, где $2\bar{\omega} = \omega_2 + \omega_1$ и $\Delta \omega = \omega_2 - \omega_1$, можно записать простые аналитические соотношения [15]:

$$\omega_0 = \kappa/G, \ G_3\bar{\omega}^2 = G, \ G_3(\Delta\omega + \omega_0) = M.$$
(2)

Несмотря на ряд попыток, последовательный вывод (1) как нелинейного динамического уравнения для коллективной переменной Х проведен не был. Однако в линейном приближении уравнение (1) было верифицировано, когда на основе уравнения Ландау-Лифшица был точно рассчитан полный спектр магнонных мод на фоне вихря [15]. Этим спин-волновым модам отвечают колебания намагниченности вида $f_n(r) \exp(im\chi + i\omega t)$, где r, χ – полярные координаты в плоскости магнетика, n и m - радиальное и азимутальное числа. Моды с $m = \pm 1$ включают сдвиг координаты вихревого кора. Прямой расчет показал, что одна из них с m = 1 имеет аномально малую частоту ω_0 , а остальные образуют слабо расщепленные дублеты со значениями m=1 и m=-1 и частотами $\bar{\omega} \pm \Delta \omega/2, \ \Delta \omega \sim \omega_0 \ll \bar{\omega}$ [15, 16]. Найденные аналитически значения частот трех мод, включающих моду с ω_0 и низколежащий дублет, естественно сопоставить с частотами колебаний с собственными частотами линеаризованной версии уравнения (1). Это позволило записать простые аналитические выражения для феноменологических коэффициентов G₃ и M в этом уравнении через частоты, найденные в рамках аналитической теории [15]. Мода с m = -1 соответствует динамике с отрицательной частотой, то есть ей отвечает прецессионное движение в направлении, противоположном тому, что реализуется для мод с частотами $\omega_{0,2}$.

Оказалось, что хотя значения констант получены только в линейном приближении, они позволяют опи-

Письма в ЖЭТФ том 91 вып. 3-4 2010

сать всю совокупность численных данных, включая движение вихря с немалой амплитудой [12]. Таким образом, в этом подходе нелинейность определяется только потенциальной силой в уравнении (1). Подчеркнем, что согласие достигается только при одновременном учете инерционного члена и неньютоновского слагаемого с третьей производной. К сожалению, в то время анализ ограничился численными симуляциями, и экспериментальное наблюдение этой сложной неньютоновской динамики для вихрей в легкоплоскостных магнетиках провести не удалось.

Исследование малых магнитных частиц изменило ситуацию с наблюдением вихревой динамики магнетиков. Для таких частиц вихрь реализует основное состояние, его положение можно контролировать, и возможно прямое наблюдение динамики вихря различными методами. Из данных, полученных уже в первых работах по наблюдению динамики вихря, видно наличие сложных некруговых траекторий вихря [17-20]. Объяснение этого эффекта на основе тех же соображений, что и для вихрей в легкоплоскостных магнетиках, было дано в работах [21, 22]. Оказалось, что соотношение $\Delta \omega \sim \omega_0 \ll \bar{\omega}$ выполняется и для вихрей в магнитомягких ферромагнетиках, при этом $ar{\omega} \propto \sqrt{\lambda}, \, \lambda = L/R, \, L$ – толщина частицы, R - ее радиус, обычно $\lambda \ll 1$, а величины $\omega_0 \propto \lambda$ и $\Delta \omega \propto \lambda$ содержат следующую степень этого малого параметра [22, 23]. Однако анализ динамики вихря для малых магнитных частиц требует последовательного учета нелокального магнитодипольного взаимодействия, что сильно усложняет расчеты. Недавно в работе [24] было получено соотношение $\Delta \omega \simeq 3.5 \omega_0$, хорошо согласующееся с экспериментом (отметим, что это соотношение очень близко к тому, что имеет место для легкоплоскостных магнетиков без учета дипольного взаимодействия [15, 16]). Возможность использования простого уравнения (1) для описания движения кора вихря в различных ситуациях открывает интересные перспективы предсказания поведения системы при возбуждениях различной природы, например, под действием переменного магнитного поля или/и спин-поляризованного тока.

В настоящей работе на основе численного моделирования мы показываем адекватность простого феноменологического подхода, основанного на уравнении (1), для магнитных частиц круговой формы в вихревом состоянии.

Мы провели серию микромагнитных расчетов, в которых динамика намагниченности для наноточки, находящейся в вихревом состоянии, возбуждалась субнаносекундными импульсами поля, подобно тому, как это было реализовано экспериментально в работе [20]. Была рассмотрена система со следующими параметрами: радиус наноточки R =150 нм, толщина L = 10 нм; магнитные параметры как у пермаллоя: намагниченность насыщения $M_s = 800$ э.м.е./см³, что отвечает величине $4\pi\gamma M_s =$ $2\pi\cdot 30\,\Gamma\Gamma$ ц, γ – гиромагнитное отношение, константа обменного взаимодействия $A = 1.3 \cdot 10^{-6}$ эрг/см, затухание не учитывалось. Моделирование проводилось с помощью пакета микромагнитных программ SpinPM, который позволяет численно интегрировать уравнение Ландау-Лифшица на конечно-разностной сетке, используя метод Рунге-Кутта четвертого порядка. Размер ячейки вычислительной сетки составляет $1.5 \times 1.5 \times 10$ нм³. Поле направлено в плоскости диска в виде трапециевидного импульса, состоящего из трех равных по длительности участков (линейное возрастание поля, постоянное значение и линейное убывание). Первоначально, до подачи импульса, вихрь располагается в центре диска, и система находится в равновесии. При подаче импульса магнитная система возбуждается, см. рис.1а. На рис.1b показаны спектры Фурье усредненной по диску компоненты намагниченности M_x для импульсов амплитудой 100Э и длительностью от 1000 до 10 пс [25]. Во всех спектрах отклика системы присутствует пик на частоте 320 МГц. По мере уменьшения длительности возбуждающего импульса, в спектре начинает проявляться два других пика, на частотах 7.0 ГГц и 8.0 ГГц. Амплитуды пиков высокочастотных возбуждений практически незаметны для импульса длительностью 1000 пс и становятся максимальны для самого короткого импульса 10 пс.

Сравним результаты численного моделирования с известными теоретическими результатами. Рассмотрим сначала частоты возбужденных мод. Частота гиротропной моды вихря составляет ω_0 = $= 20\gamma M_s L/9R$ [26], высокие частоты возбуждений с $m = \pm 1$ определяются как $\bar{\omega} \simeq 0.9 \cdot 4\pi \gamma M_s \sqrt{L/R}$ [23] и $\Delta\omega\simeq 3.5\omega_0$ [24]. Для нашей системы это дает $\omega_0/2\pi = 0.33$ ГГц, $\bar{\omega}/2\pi = 7$ ГГц и $\Delta\omega/2\pi = 1.1$ ГГц. Эти значения находятся в хорошем соответствии с результатами численного моделирования: $\omega_0/2\pi$ = = 0.32 ГГц, $\bar{\omega}/2\pi = 7.5$ ГГц и $\Delta\omega/2\pi = 1.0$ ГГц, и позволяют однозначно установить природу возбужденных мод: низкочастотная мода соответствует гиротропной моде вихря, а высокочастотные возбуждения соответствуют низшему дублету с m = $=\pm 1.$

Нетривиальная зависимость спектров от длительности импульса и вид траекторий центра вихря, см. рис.2, может быть легко объяснена с помощью феноменологического уравнения (1). Для этого при-

Рис.1. (а) Развертка по времени импульса поля (верхний график) и компоненты усредненной по диску намагниченности (нижний график). Полная длительность импульса составляет 100 пс, амплитуда – 100 Э. (b) Спектр Фурье усредненной по диску х-компоненты намагниченности M_x для импульсов с амплитудой 100 Э и длительностью 1000, 300, 100, 30 и 10 пс, как обозначено на графиках

мем стандартное значение гироскопического коэффициента, $G = 2\pi LM_s/\gamma$ [26], и представим полную силу \mathbf{F}^{tot} как $\mathbf{F}^{\text{tot}} = -\kappa(|\mathbf{X}|)\mathbf{X} + \mathbf{F}$, для малых смещений $\kappa(0) \simeq (20/9) \cdot 2\pi M_s L^2/R$ [26], сила $\mathbf{F} = 2\pi M_s RL[\mathbf{H}(t) \times \mathbf{e}_z]/3$ описывает воздействие переменного внешнего магнитного поля, приложенного в плоскости диска [26]. Поскольку соотношение между частотами возбуждений такое же, как для легкоплоскостных ферромагенетиков ($\omega_0 \ll \omega_1 \simeq \omega_2$), мы можем воспользоваться соотношениями (2) [15], из которых находим $G_3 = G/\bar{\omega}^2$ и $M = G(\omega_0 + \Delta \omega)/\bar{\omega}^2$. Используя приведенные выше аналитические выражения для ω_0 , $\bar{\omega}$ и $\Delta \omega$, легко получим $G_3 = 0.625 \cdot 4\pi\gamma M_s (R/\gamma^2)$ и не зависящее от радиуса системы значение инерционной массы $M = 0.58 \cdot L/\gamma^2$, что

Письма в ЖЭТФ том 91 вып. 3-4 2010

Рис.2. Фазовые траектории системы в координатах $\langle M_x \rangle$, $\langle M_y \rangle$ (отложены по горизонтальной и вертикальной осям, соответственно, в э.м.е/см³), по которым восстанавливается траектория движения кора вихря [25], для возбуждения наноточки импульсами поля с различной длительностью Δt : (a) $\Delta t = 1000$ пс, (b) $\Delta t = 300$ пс, (c) $\Delta t = 100$ пс, (d) $\Delta t = 30$ пс

отвечает значению массы на единицу длины вихря M/L порядка $0.7 \cdot 10^{-14}$ г/см. Решения этого уравнения демонстрируют тот же сложный вид траекторий, включающий быстрое движение на фоне медленной прецессии вихря с частотой ω_0 , что и наблюдающийся численно, см. рис.2. Отметим, что для быстрых колебаний характерна суперпозиция двух движений с различными частотами, что и привело авторов работы [14] к записи уравнения третьего порядка, и что амплитуда быстрых осцилляций очень чувствительна к длине импульса, см. рис.2.

Для более детального анализа соотношения амплитуд различных типов колебаний мы используем линеаризованную версию (1), записав ее в комплексной форме для переменной A = X + iY:

$$iG_3\frac{d^3A}{dt^3} + M\frac{d^2A}{dt^2} + iG\frac{dA}{dt} + \kappa A = \tilde{F}, \ \tilde{F} = F_x + iF_y.$$
(3)

При возбуждении системы импульсами поля в комплексном уравнении (3) $\tilde{F}(t) = i2\pi M_s RL\tilde{H}(t)/3$, $\tilde{H}(t) \equiv H_x(t) + iH_y(t)$. Считая, что A(t) = 0 при $t \to -\infty$, общее решение легко получаем в виде суперпозиции слагаемых, описывающих колебания с тремя частотами, $A = X + iY = \sum_{\alpha} A_{\alpha}(t)$,

$$egin{aligned} A_0(t) &= i\gamma H(\omega_0,t) e^{i\omega_0 t}, \; 2A_2(t) = -i\gamma H(\omega_2,t) e^{i\omega_2 t}, \ 2A_1(t) &= -i\gamma H(-\omega_1,t) e^{-i\omega_1 t}, \end{aligned}$$

где введена универсальная функция $H(\omega,t) = \int_{-\infty}^{t} \tilde{H}(\tau) \exp(-i\omega\tau) d\tau$. Функцию $H(\omega,t)$ неслож-

но найти для любой формы импульса, но наиболее показателен анализ в предельных случаях длинных и коротких импульсов. Если длительность импульса мала по сравнению с соответствующим периодом колебаний, $\omega \Delta t/2\pi \ll 1,$ то $H(\omega,t) = H_0 \Delta t \exp(-i\omega t),$ $\int\limits_{0}^{\infty'} H(t) dt.$ Таким образом, в случае $H_0\Delta t \equiv$ предельно короткого импульса поля $ar{\omega}\Delta t/2\pi~\ll~1$ амплитуды всех мод сравнимы, $A_1 \simeq A_2 \simeq 2A_0$. Для более длинных импульсов, удовлетворяющих условию $\omega_0 \Delta t/2\pi \ll 1 \ll \bar{\omega} \Delta t/2\pi$, функция $H(\omega, t)$ быстро убывает, и амплитуда высокочастотных мод мала. Такое поведение хорошо описывает данные моделирования; например, соотношение $\bar{\omega}\Delta t/2\pi=1$ в нашем случае дает $\Delta t = 130\,\mathrm{nc},$ что согласуется с наблюдаемым существенным уменьшением амплитуды высокочастотных осцилляций при переходе от импульса $\Delta t = 100$ пс к $\Delta t = 300$ пс, сравните рис. 2b и с. В то же время, такое же изменение длительности импульса при выполнении условия $ar{\omega}\Delta t/2\pi$ \ll 1 не меняет качественно форму траекторий и приводит только к изменению амплитуды смещения вихря, сравните рис. 2с и d.

Основной особенностью уравнения (1) по сравнению со стандартным динамическим уравнением ньютоновского типа является наличие высшего гироскопического слагаемого с третьей производной координаты от времени. Этот факт проявляется в необычном отклике системы на дельтообразный импульс силы; после импульса силы вида $F\Delta t\delta(t)$ координата изменяется со временем как $X = (F\Delta t/2G_3)t^2$, причем вихрь смещается в направлении, перпендикулярном направлению силы. В случае стандартной ньютоновской динамики при таком же воздействии должен реализоваться линейный рост смещения вихря со временем t в направлении силы. Мы провели анализ траекторий вихря в течении первых десятков пикосекунд (50-100 пс) после импульса поля длительностью 10 пс. Оказалось, что при этом смещение вихря происходит в направлении, перпендикулярном силе, как и следует из неньютоновского уравнения (1), и что зависимость координаты вихря от времени описывается функцией вида $X \propto t^{
u}$, где значение $u = 2.1 \pm 0.2$. Более того, значение G_3 , найденное из подгонки X(t) квадратичной функцией, по порядку величины согласуется с приведенным выше аналитическим результатом (их отношение составляет 2.8 ± 0.5). (Некое количественное расхождение может быть обусловлено отклонением соотношения (М) и Х от известной зависимости [25].) Это говорит о прекрасном качественном согласовании результатов численного моделирования и аналитической модели (1) и, в целом, демонстрирует неньютоновский характер высокочастотной динамики вихря.

Достоинство феноменологического уравнения (1) состоит в том, что с его помощью можно описать и другие типы возбуждения движения вихря, при соответствующем выборе силы **F**. Здесь важно подчеркнуть, что включение инерционного слагаемого (учет эффективной массы вихря) имеет смысл только при одновременном учете не-ньютоновского слагаемого с третьей производной по времени в этом уравнении, которое полностью определяет начальный этап движения при малой длительности импульса.

Авторы благодарны А.К. Звездину за внимательное прочтение рукописи и многие ценные замечания. Работа поддержана совместным грантом Российского фонда фундаментальных исследований и Национальной Академии Наук Украины (# 08-02-90495/219-09).

- R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003); Advanced Magnetic Nanostructures, Eds. D. J. Sellmyer and R. Skomski, Springer, Berlin, 2006.
- A. Wachowiak, J. Wiebe, M. Bode et al., Science 298, 577 (2002).
- R. Hertel, S. Gliga, M. Fähnle et al., Phys. Rev. Lett. 98, 117201 (2007).
- V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs et al., Nat. Phys. 3, 498 (2007).
- 5. B.A. Ivanov and C.E. Zaspel, Phys. Rev. Lett. 99, 247208 (2007).
- K. Yamada, S. Kasai, Y. Nakatani et al., Nat. Mater. 6, 269 (2007).
- A. V. Khvalkovskiy, J. Grollier, A. Dussaux et al., Phys. Rev. B 80, 140401(R) (2009).
- A. V. Khvalkovskiy, A. N. Slavin, J. Grollier et al., Appl. Phys. Lett. 96, 022504 (2010).
- В. Л. Березинский, ЖЭТФ 59, 907 (1970); 61, 1144 (1971).
- J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
- 11. С.Е. Коршунов, УФН 176, 233 (2006).
- F. G. Mertens and A. R. Bishop, in Nonlinear Science at the Dawn of the 21th Century, Eds. P. L. Christiansen and M. P. Soerensen, Springer-Verlag, Berlin, 1999.
- A. Thiele, Phys. Rev. Lett. 30, 230 (1973); J. Appl. Phys. 45, 377 (1974).
- F. G. Mertens, H. J. Schnitzer, and A. R. Bishop, Phys. Rev. B 56, 2510 (1997).
- B. A. Ivanov, H. J. Schnitzer, F. G. Mertens et al., Phys. Rev. B 58, 8464 (1998).
- B. A. Ivanov and G. M. Wysin, Phys. Rev. B 65, 134434 (2002).

Письма в ЖЭТФ том 91 вып. 3-4 2010

- J. P. Park, P. Eames, D. M. Engebretson et al., Phys. Rev. B 67, 020403(R) (2003).
- S. B. Choe, Y. Acremann, A. Scholl et al., Science 304, 420 (2004).
- J. Park and P.A. Crowell, Phys. Rev. Lett. 95, 167201 (2005).
- 20. X. Zhu, Zh. Liu, V. Metlushko et al., Phys. Rev. B 71, 1804089(R) (2005).
- B. A. Ivanov and C. E. Zaspel, Appl. Phys. Lett. 94, 027205 (2002).
- 22. B. A. Ivanov and C. E. Zaspel, Phys. Rev. Lett. 94, 027205 (2005).

- C.E. Zaspel, B.A. Ivanov, P.A. Crowell et al., Phys. Rev. B 72, 024427 (2005).
- K. Y. Guslienko, A. N. Slavin, V. Tiberkevich et al., Phys. Rev. Let. 101, 247203 (2008).
- 25. В случае, если в системе возбуждена лишь низкочастотная гиротропная мода, координата **X** кора вихря пропорциональна усредненной намагниченности системы $\langle \mathbf{M} \rangle$: $\langle \mathbf{M} \rangle = 2\pi M_s RL[\mathbf{e}_z, \mathbf{X}]/3$ [26]. Детальный анализ траекторий кора вихря показал, что подобная зависимость сохраняется и при возбуждении высокочастотных мод.
- K. Yu. Guslienko, B. A. Ivanov, Y. Otani et al., J. Appl. Phys. 91, 8037 (2002).