
Pis'ma v ZhETF, vol. 91, iss. 6, pp. 334 { 338 c 2010 March 25Energy gaps at neutrality point in bilayer graphene in a magnetic �eldE.V.Gorbar, V. P.Gusynin1), V.A.Miransky�Bogolyubov Institute for Theoretical Physics, 03680 Kiev, Ukraine�Department of Applied Mathematics, University of Western Ontario, London, N6A 5B7 Ontario, CanadaSubmitted 18 January 2010Utilizing the Baym-Kadano� formalism with the polarization function calculated in the random phase ap-proximation, the dynamics of the � = 0 quantum Hall state in bilayer graphene is analyzed. Two phases withnonzero energy gap, the ferromagnetic and layer asymmetric ones, are found. The phase diagram in the plane( ~�0; B), where ~�0 is a top-bottom gates voltage imbalance, is described. It is shown that the energy gap scaleslinearly, �E � 14B[T]K, with magnetic �eld.Introduction. { The possibility of inducing and con-trolling the energy gap by gates voltage makes bilayergraphene [1 { 3] one of the most active research areaswith very promising applications in electronic devices.Recent experiments in bilayer graphene [4, 5] showedthe generation of gaps in a magnetic �eld with completelifting of the eight-fold degeneracy in the zero energyLandau level, which leads to new quantum Hall stateswith �lling factors � = 0;�1;�2;�3. Besides that, insuspended bilayer graphene, Ref.[4] reports the obser-vation of an extremely large magnetoresistance in the� = 0 state due to the energy gap �E, which scales lin-early with a magnetic �eld B, �E � 3:5� 10:5B[T]K,for B . 10T. This linear scaling is hard to explain bythe standard mechanisms [6, 7] of gap generation used ina monolayer graphene, which lead to large gaps of the or-der of the Coulomb energy e2=l � B1=2, l = (~c=eB)1=2is the magnetic length.In this Letter, we study the dynamics of clean bilayergraphene in a magnetic �eld, with the emphasis on the� = 0 state in the quantum Hall e�ect (QHE). It will beshown that, as in the case of monolayer graphene [8], thedynamics in the QHE in bilayer graphene is described bythe coexisting quantum Hall ferromagnetism (QHF) [6]and magnetic catalysis (MC)[7] order parameters. Theessence of the dynamics is an e�ective reduction by twounits of the spatial dimension in the electron-hole pair-ing in the lowest Landau level (LLL) with energy E = 0[9 { 11]. As we discuss below, there is however an essen-tial di�erence between the QHE's in these two systems.While the pairing forces in monolayer graphene lead toa relativistic-like scaling �E �pjeBj for the dynamicalgap, in bilayer graphene, such a scaling takes place onlyfor strong magnetic �elds, B & Bthr, where our estimateyields Bthr � 30�60T. For B . Bthr, a nonrelativistic-1)e-mail: vgusynin@bitp.kiev.ua

like scaling �E � jeBj is realized in the bilayer. Theorigin of this phenomenon is very di�erent forms of thepolarization function in monolayer graphene and bilayerone that in turn is determined by the di�erent dispersionrelations for quasiparticles in these two systems. Thepolarization function is one of the major players in theQHE in bilayer, and its consideration distinguishes thiswork from the most of previous theoretical ones studyingthe QHE in bilayer graphene [12] 2).Using the random phase approximation in the analy-sis of the gap equation, we found that the gap in theclean bilayer is �E � 14B[T]K for the magnetic �eldB . Bthr. The phase diagram in the plane ( ~�0; B),where ~�0 is a top-bottom gates voltage imbalance, isdescribed. These are the central results of this Letter.Hamiltonian. { The free part of the e�ective low en-ergy Hamiltonian of bilayer graphene is [1]:H0 = � 12m Z d2x	+V s(x) 0 (�y)2�2 0 !	V s(x);(1)where � = p̂x1 + ip̂x2 and the canonical momentump̂ = �i~r+ eA=c includes the vector potential A cor-responding to the external magnetic �eld B. Withoutmagnetic �eld, this Hamiltonian generates the spectrumE = �p2=2m, m = 1=2v2F , where the Fermi velocityvF ' c=300 and 1 � 0:34�0:40 eV. The two componentspinor �eld 	V s carries the valley (V = K;K 0) and spin(s = +;�) indices. We will use the standard convention:	TKs = ( A1;  B2)Ks whereas 	TK0s = ( B2;  A1)K0s.Here A1 and B2 correspond to those sublattices in thelayers 1 and 2, respectively, which, according to Bernal(A2 � B1) stacking, are relevant for the low energy dy-2)The polarization e�ects in bilayer graphene were recently con-sidered in [13], however, the authors used a polarization functionwith no magnetic �eld for their estimate.334 �¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 5 { 6 2010



Energy gaps at neutrality point : : : 335namics. The e�ective Hamiltonian (1) is valid for mag-netic �elds 1T < B < Bthr. For B < 1T , the trig-onal warping should be taken into account [1]. ForB > Bthr, a monolayer like Hamiltonian with lineardispersion should be used.The Zeeman and Coulomb interactions in bilayergraphene are (henceforth we will omit indices V ands in the �eld 	V s):Hint = �BBZ d2x	+(x)�3	(x) + e22� Z d3xd3x0 n(x)n(x0)jx� x0j= �BBZ d2x	+(x)�3	(x) + 12 Z d2xd2x0 [V (x� x0)� (�1(x)�1(x0) + �2(x)�2(x0))+ 2V12(x� x0)�1(x)�2(x0)] ;(2)where �B is the Bohr magneton, � is the dielectric con-stant, and n(x) = �(z � d2 )�1(x) + �(z + d2 )�2(x) is thethree dimensional charge density (d ' 0:3nm is the dis-tance between the two layers). The interaction poten-tials V (x) and V12(x) describe the intralayer and in-terlayer interactions, respectively. Their Fourier trans-forms are V (k) = 2�e2=�k and V12(k) = 2�e2e�kd=�k.The two-dimensional charge densities �1(x) and �2(x)are:�1(x) = 	+(x)P1	(x) ; �2(x) = 	+(x)P2	(x) ; (3)where P1 = 1+��32 and P2 = 1���32 are projectors onstates in the layers 1 and 2, respectively [here �3 is thePauli matrix acting on layer components, and � = �1for the valleys K and K 0, respectively].Symmetries. { The Hamiltonian H = H0 + Hintdescribes the dynamics at the neutral point (with nodoping). Because of the projectors P1 and P2 incharge densities (3), the symmetry of the HamiltonianH is essentially lower than the symmetry in mono-layer graphene. If the Zeeman term is ignored, it isU (K)(2)S � U (K0)(2)S � Z(+)2V � Z(�)2V , where U (V )(2)Sde�nes the U(2) spin transformations in a �xed valleyV = K;K 0, and Z(s)2V describes the valley transforma-tion � ! �� for a �xed spin s = � (recall that inmonolayer graphene the symmetry would be U(4) [11]).The Zeeman interaction lowers this symmetry down toG2 � U (K)(1)+ �U (K)(1)� �U (K0)(1)+ �U (K0)(1)� �Z(+)2V � Z(�)2V , where U (V )(1)s is the U(1) transforma-tion for �xed values of both valley and spin. Recall thatthe corresponding symmetry in monolayer graphene isG1 � U (+)(2)V �U (�)(2)V , where U (s)(2)V is the U(2)valley transformations for a �xed spin.Order parameters. { Although the G1 and G2 sym-metries are quite di�erent, it is noticeable that their

breakdowns can be described by the same QHF and MCorder parameters. The point is that these G1 and G2 de-�ne the same four conserved commuting currents whosecharge densities (and four corresponding chemical po-tentials) span the QHF order parameters (we use thenotations of Ref. [8]):�s : 	ys	s =  yKA1s KA1s +  yK0A1s K0A1s+  yKB2s KB2s +  yK0B2s K0B2s ; (4)~�s : 	ys�	s =  yKA1s KA1s �  yK0A1s K0A1s+  yKB2s KB2s �  yK0B2s K0B2s : (5)The order parameter (4) is the charge density for a �xedspin whereas the order parameter (5) determines thecharge-density imbalance between the two valleys. Thecorresponding chemical potentials are �s and ~�s, respec-tively. While the former order parameter preserves theG2 symmetry, the latter completely breaks its discretesubgroup Z(s)2V . Their MC cousins are�s : 	ys�3	s =  yKA1s KA1s �  yK0A1s K0A1s�  yKB2s KB2s +  yK0B2s K0B2s ; (6)~�s : 	ys��3	s =  yKA1s KA1s +  yK0A1s K0A1s�  yKB2s KB2s �  yK0B2s K0B2s : (7)These order parameters can be rewritten in the formof Dirac mass terms [8] corresponding to the masses�s and ~�s, respectively. While the order parameter(6) preserves the G2, it is odd under time reversal T[14]. On the other hand, the order parameter (7) isconnected with the conventional Dirac mass ~�. It de-termines the charge-density imbalance between the twolayers [1]. Like ~�s, this mass term completely breaksthe Z(s)2V symmetry and is even under T . Note that be-cause of the Zeeman interaction, the SU (V )(2)S is ex-plicitly broken, leading to a spin gap. This gap couldbe dynamically strongly enhanced [15]. In that case,a quasispontaneous breakdown of the SU (V )(2)S takesplace. The corresponding ferromagnetic phase is de-scribed by �3 = (�+���)=2 with the QHF order para-meter 	y�3	, and by �3 = (�+ ���)=2 with the MCorder parameter 	y�3�3	 [8].Gap equation. { In the framework of the Baym-Kadano� formalism [16], and using the polarizationfunction calculated in the random phase approximation(RPA), we analyzed the gap equation for the LLL qua-siparticle propagator with the order parameters intro-duced above. Recall that in bilayer graphene, the LLLincludes both the n = 0 and n = 1 LLs, if the Coulombinteraction is ignored [1]. Therefore there are sixteenparameters �s(n), �s(n), ~�s(n), and ~�s(n), where the�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 5 { 6 2010



336 E.V.Gorbar, V. P.Gusynin, V.A.Miranskyindex n = 0; 1 corresponds to the n = 0 and n = 1 LLs,respectively. The following system of equations was de-rived for these parameters:G�1�s0(
) = S�1�s (
)� i Z d! d2k(2�)3 e�k2l2=2[G�s0(!)+ G�s1(!)k2l2=2]Ve� (
� !; jkj)� e2d2�l2 �1 + �2 A1 + 1� �2 A2 � ; (8)G�1�s1(
) = S�1�s (
)� i Z d! d2k(2�)3 e�k2l2=2[G�s0(!)� k2l2=2 +G�s1(!)(1� k2l2=2)2]� Ve� (
� !; jkj)� e2d2�l2 �1 + �2 A1 + 1� �2 A2� : (9)Here A1 = Pn;s sgn(E�ns) , A2 = Pn;s sgn(E+ns),andS�s(!) = 1! + �0 � sZ + � ~�0 ; G�sn(!) = 1! �E�ns(10)are frequency dependent factors in the bare and full LLLpropagators, whereE�ns = �(�s(n) + �s(n)) + �(~�s(n)� ~�s(n)) (11)are the energies of the LLL states, �0 is chemical poten-tial, Z is the Zeeman energy, Z ' �BB = 0:67B[T]K.The second and third terms on right hand sides ofEqs.(8), (9) describe the Fock and Hartree interactions,respectively. Note that because for the LLL states onlythe component  B2s ( A1s) of the wave function at theK(K 0) valley is nonzero, their energies depend only onthe eight independent combinations of the QHF and MCparameters shown in Eq.(11). The function Ve�(!; k),describing the Coulomb interaction, isVe�(!; k) = 2�e2� 1k + 4�e2� �(!;k2) ; (12)where �(!;k2) is the polarization function in a magnetic�eld. Since the dependence of �(!;k2) on ! is weak,the static polarization will be used. Then, in the case offrequency independent order parameters, the integrationover ! in Eqs. (8), (9) can be performed explicitly, andwe get a system of algebraic equations for the energiesE�ns of the LLL states.It is convenient to rewrite the static polarization�(0;k2) in the form � = (m=~2)~�(y), where both ~�and y � k2l2=2 are dimensionless. The function ~�(y)was expressed in terms of the sum over all the Lan-dau levels and was analyzed both analytically and nu-merically. At y � 1, it behaves as ~�(y) ' 0:55y and

its derivative ~�0 changes from 0:55 at y = 0 to 0.12at y = 1. At large y, it approaches a zero magnetic�eld value, ~�(y) ' ln 4=� (see Fig.1) 3). Because of the
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Fig.1. The static polarization function 4� ~�(y)Gaussian factors e�k2l2=2 = e�y in Eqs. (8) and (9),the relevant region in the integrals in these equations is0 < y . 1. The crucial point in the analysis is thatthe region where the bare Coulomb term k in the de-nominator of Ve�(k) � Ve�(0; k) (12) dominates is verysmall, 0 < y . 10�3B[T]. The main reason of that is alarge massm of quasiparticles,m � 10�2me � 108K=c2.As a result, the polarization function term dominates inVe�(k) that leads to Ve� (k) = C(y)~2=ml2k2, where thepart with the factor 1=k2 corresponds to the Coulombpotential in two dimensions, and the function C(y) de-scribes its smooth modulations at 0 � y . 1 (see Fig.1).It is unlike the case of monolayer graphene where thee�ective interaction is proportional to 1=k. As we dis-cuss below, this in turn implies that, in the low energymodel described by the Hamiltonian in Eqs. (1), (2), thescaling �E � jeBj takes place for the dynamical energygap, and not �E � pjeBj taking place in monolayergraphene [8, 6, 7].Last but not least, using the model with four-component wave functions [1], we determined the up-per limit for the values of B, Bthr, for which the lowenergy e�ective model can be used. We found thatBthr � 30 � 60T, corresponding to the experimentalvalues 0:34� 0:40eV of the parameter 1 = 2mv2F . Wepredict that for the values B > Bthr, the monolayer likescaling, �E �pjeBj, should take place.3)One can show that the presence of a maximum in the func-tion 4� ~�(y) in Fig.1 follows from the equality of the polarizationcharge density n(r) in a magnetic �eld B and that at B = 0 asr ! 0. �¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 5 { 6 2010



Energy gaps at neutrality point : : : 337Solutions. At the neutral point (�0 = 0, no doping),we found two competing solutions of Eqs. (8) and (9): I)a ferromagnetic (spin splitting) solution, and II) a layerasymmetric solution, actively discussed in the literature.The energy (11) of the LLL states of the solution I equals:E(I)�ns = s(Z + In(B)2ml2 )� � ~�0 ; (13)where the notation In(B) is used for the integralsI0(B)= 1Z0 dy(1+y)e�ypxy + 4� ~�(y) ; I1(B)= 1Z0 dy(1�y+y2)e�ypxy + 4� ~�(y) ;(14)with x = 0:003B(T ). Note that the Hartree interactiondoes not contribute to this solution. The situation isdi�erent for the solution II:E(II)�ns = sZ � �� ~�0 + In(B)2ml2 � 2e2d�l2 � : (15)The last term in the parenthesis is the Hartree one. Forsuspended bilayer graphene, we will take � = 1.The energy density of the ground state for these so-lutions is (a = I; II):�(a) = � 18�l2 X�=�Xs=� Xn=0;1 hjE(a)�nsj ++ (�s 0:67B + � ~�0) sgnE(a)�nsi : (16)It is easy to check that for balanced bilayer ( ~�0 = 0)the solution I is favorite. The main reason of this is thepresence of the capacitor like Hartree contribution in theenergy density of the solution II: it makes that solutionless stable. For ~�0 = 0, the dependence of the LLL ener-gies E(I)�ns of the solution I on B is shown in Fig.2 (energygaps are degenerate in �). The perfectly linear form ofthis dependence is evident. Also, the degeneracy be-tween the states of the n = 0 LL and those of the n = 1LL is removed. The energy gap corresponding to the� = 0 plateau is �E = (E(I)�1� � E(I)�1+)=2 ' 14:3B[T]K.In Fig.3, the phase diagram in the plane ( ~�0; B) is pre-sented. The area marked by I (II) is that where thesolution I (solution II) is favorite. The two dashed linescompose the boundary of the region where the two solu-tions coexist (the solution I does not exist to the rightof the dashed line in the region II, while the solution IIdoes not exist to the left of the dashed line in the re-gion I). The bold line is the line of the �rst order phasetransition. It is noticeable that for any �xed value ofB ( ~�0), there are su�ciently large values of ~�0 (B), atwhich the solution I (solution II) does not exist at all.
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Fig.2. The energies of the LLL states as functions of B
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~Fig.3. The phase diagram in the ( ~�0; B) planeIt is because a voltage imbalance (Zeeman term) tendsto destroy the solution I (solution II).In conclusion, the dynamics of bilayer graphene ina magnetic �eld B . Bthr is characterized by a verystrong screening of the Coulomb interaction that relatesto the presence of a large mass m in the nonrelativistic-like dispersion relation for quasiparticles. The func-tional dependence of the gap on B in Fig.2 agrees withthat obtained very recently in experiments in Ref. [4].The existence of the �rst order phase transition in theplane ( ~�0; B) is predicted. We also estimate the valueBthr, at which the change of the scaling �E � jeBj to�E � pjeBj occurs, as Bthr � 30 � 60T. It wouldbe interesting to extend this analysis to the case of thehigher, � = 1; 2; and 3, LLL plateaus [5].We thank Junji Jia and S.G. Sharapov for fruit-ful discussions. The work of E.V.G and V.P.G.8 �¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 5 { 6 2010
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