
Pis'ma v ZhETF, vol. 91, iss. 6, pp. 339 { 345 c 2010 March 25Analytical approximation for single-impurity Anderson modelI. S.Krivenko, A.N.Rubtsov, M. I.Katsnelson+, A. I. Lichtenstein�Department of Physics, Moscow State University, 119992 Moscow, Russia+Radboud University, 6525AJ, Nijmegen, The Netherlands�Institut f�ur Theoretische Physik, Universit�at Hamburg, D-20355 Hamburg, GermanySubmitted 30 Dezember 2009Resubmitted 2 February 2010We propose a new renormalized strong-coupling expansion to describe the electron spectral properties ofsingle-band Anderson impurity problem in a wide energy range. The �rst-order result of our scheme reproduceswell the entire single-electron spectrum of correlated impurity with the Kondo-like logarithmic contributionsto the self energy and the renormalization of atomic resonances due to hybridization with conduction electrons.The Friedel sum rule for a half-�lled system is ful�lled. The approach is based on so-called dual transforma-tion, so that the series is constructed in vertices of the corresponding atomic Hamiltonian problem. The atomicproblem of single impurity has a degenerate ground state, so the application of the perturbation theory is notstraightforward. We construct a special approach dealing with symmetry-broken ground state of the atomicproblem. The renormalization ensures a convergence near the frequencies of atomic resonances. Proposedexpansion contains a small parameter in the weak- and in the the strong-coupling case and interpolates wellin between. Formulae for the �rst-order dual diagram correction are obtained analytically in the real-timedomain. A generalization of this scheme to a multi-orbital case can be important for the realistic descriptionof correlated solids.Introduction. The problem of realistic descrip-tion of spectral properties of correlated impurity in themetallic surrounding is far from solution despite of con-siderable progress during the past years. There are quitesuccessful tools for large Coulomb U , particularly dia-grammatic pseudoparticle approach [1]. Transport prop-erties can be described in this limit also [2, 3]. Thecase of moderate U is less studied, although there is aninteresting physics behind, e.g. renormalization of themultiplet structure due to hybridization with conduc-tion band. Exact solutions by using the Bethe-ansatzare obtained for thermodynamical [4, 5] and steady-statetransport [6] properties. There are numerically exactcontinuous-time quantum Monte Carlo calculations inimaginary time domain[7, 8]. Practical accuracy of thesemethods is limited by an ill-posed problem of analyticalcontinuation to the real-frequency axis. More accuratedata can be obtained within the Numerical Renormal-ization Group framework [9].Two previous works should are particularly im-portant for our paper. First, we refer to a nu-merical RPA-like approach [10]. All Kondo proper-ties are described surprisingly well, if the considera-tion starts from a local-moment broken symmetry so-lution. The Abrikosov-Suhl resonance, Kondo energyscale and Friedel sum rule have been reproduced. Sec-ond, we mention the superperturbation solver [11], thatis a kind of strong-coupling expansion around an ex-

act paramagnetic solution for certain cluster. That the-ory performs well for a moderately low temperatures,but su�ers serious problems as temperature goes tozero.In the present paper we propose an analytical ap-proximation for spectral properties of a single-band An-derson impurity model (SIAM) with moderate U at zerotemperature. Our zero approximation is a mean-�eld so-lution constructed for a symmetry-broken state of theatomic problem. The theory utilizes an exact map-ping of the SIAM to auxiliary (dual) variables [12, 13]in a real-time domain. Another important property ofour method is a renormalization procedure, which al-lows to describe a shift of the atomic resonances due tohybridization with a conduction band. Similar to [10]and [11], our scheme provides a description of SIAMat di�erent energy scales, including renormalization ofthe spectral function of the entire conduction band.This is of particular importance for the realistic de-scription of multi-orbital correlated solids in the Dy-namical Mean Field framework. On the other hand, itdoes not pretend to describe the physics below Kondoscale, where renormalization-group analysis is required[4, 5, 9].Anderson impurity problem. We consider asingle-band Anderson impurity problem at zero temper-ature with the following action (summations over spinindex � ="; # are supposed):�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 5 { 6 2010 339 8�



340 I. S.Krivenko, A.N.Rubtsov, M. I.Katsnelson, A. I. LichtensteinS = Sat � ZZ +1�1 dt dt0�c�t�(t� t0)c�t0 ;Sat = Z +1�1 dt�i�c�t @@tc�t � U ~n"t~n#t� :Here ~n�t � 12 (�c�t�0c�t + �c�t+0c�t), so that there is aparticle-hole symmetry of Sat (in a Hamiltonian nota-tion, this would correspond to U(n" � 12 )(n# � 12 ) inter-action term) [14].We suppose an adiabatic switch of the hybridizationas time goes to in�nity. Formally this means that �is multiplied by a slow pro�le function �prof(t) such as�prof(�1) = 0 and �prof(t) = 1 otherwise. In thiscase, the evolution starts and �nishes with a bare atomhaving a single electron. The complete evolution opera-tor S(�1;1) preserves the spin orientation. Therefore,it can be divided into the two parts, responsible for theevolution that starts and �nishes with a certain spin ori-entation: S = S"" + S##; (1)where S"" and S## describe the evolution j "i�1 !! j "i+1 and j #i�1 ! j #i+1. Formally, S�� can bede�ned as S�� = Z j�ij�i eiSD[�cc]; (2)where R j�ij�i D[�cc] implies integration over the trajectoriesstarting and �nishing with a de�nite spin orientation.Such a trick is necessary due to degenerate ground stateof the atomic Hamiltonian. For usual stationary dia-grammatic technique, the ground state is unique, andtherefore always evolves to itself at in�nite time.In practice, it is enough to consider only one part ofthe evolution operator, for example S"". The accountof another part is equivalent to spin-averaging of theresults obtained.Preliminary analysis. A transformation to thedual variables [13] requires a splitting of the action intotwo parts. The �rst part might be nonlinear but shouldbe exactly solvable, and the second part is supposed tobe Gaussian. The simplest way is to choose Sat andhybridization as those parts. Such a theory will be de-veloped in the next sections. It will be shown that itdescribes the low-energy physics quite good. However,a correct description of all frequencies range requiresa more sophisticated approach, and a renormalizationprocedure will be introduced.

A Hubbard-Stratonovich decoupling of the hy-bridization term and subsequent integration over �c; c inthe evolution operator results in the dual actionS[ �f; f ]=X� +1Z�1 d� ���1� g�2��;��g�1��;�� �f�;�f�;� + V [ �f; f ];(3)where g��;� is an atomic Green's function, g12 == �ihc1�c2i, and Taylor coe�cients of the nonlinear partV [ �f; f ] are vertexes of the atomic problem (see [13, 11]for detailed discussion).Momenta of the atomic problem can be calculated inthe time domain, using world-line representation. Parts(a) and (b) of the Fig.1 show nonvanishing world lines
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Fig.1. The world-lines contributing to g�� (a,b) and(4)"#"# (c)describing the calculation of the Green's function. Onecan see that there is a de�nite ordering of the creation-annihilation operators, since the evolution starts and�nishes with a single electron with the spin-up orien-tation: annihilation should precede creation for spin-up and vice versa for spin-down operators. At thehalf-�lling case one obtains g""(t) = i�(�t)ei(U=2)t andg##(t) = �i�(t)e�i(U=2)t (� is a Heaviside step function).The Fourier transformation givesg""(�) = 1�+ U=2� i0 ; g##(�) = 1�� U=2 + i0 : (4)These formulas are su�cient to construct the mean-�eld approximation, as higher momenta does not enterthe theory in that case. In the line with the paper [13],one obtains G��(�) = �g�1�� (�)��(�)��1 ;Gdual�� (�) = G��(�)� g��(�): (5)Through the paper the mean-�eld results are denotedwith the calligraphic letters.�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 5 { 6 2010



Analytical approximation for SIAM 341An average over spin indices should be taken to ob-tain the �nal result:G(�) = 1=2�+ U=2��(�)� i0 + 1=2�� U=2��(�) + i0 :(6)In our notation, quantities before and after spin aver-aging are marked with the same letters. To prevent aconfusion, we always supply the non-averaged quanti-ties with spin indices.We will be mostly interested in Kondo-like problem,so that atomic resonances �U=2 lie outside the conduc-tion band. One can see the mean-�eld DOS of such aproblem is built of slightly reshaped band DOS and two�-peaks at �U=2. The main limitation of this approxi-mation is that no Kondo peak appears near Fermi level,while the higher-energy part of DOS is qualitatively cor-rect.Low-energy properties: general considera-tion. A calculation of corrections to the mean-�eldtheory requires knowledge of higher momenta of theatomic problem. The two-particle Green's functiong(2)1234 = hc1c2cy3cy4i can be calculated similarly to g12(indices here are combinations of energy and spin, forinstance 1 stands for �1; �1). The expression for g(2) con-tains 24 di�erent terms, corresponding to various mutualorder of the four time and spin arguments. However itturns out that only four of those terms contribute tothe non-Gaussian part �1234 = g(2)1234 � g13g24 + g14g23.The world lines corresponding to these terms are de-picted in part (c) of Fig.1. After the Fourier trans-form (omitting the energy-conserving delta function),we obtain a simple formula for the fourth-order vertex(4)1234 = �ig�111 g�122 g�133 g�144 �1234. The four-point vertexfor all-the-same spin indices is equal to zero, and for thedi�erent indices has the following simple form:(4)"#"#(�1; �2; �3; �4) = U + U2�3 � �2 � 0i : (7)The �rst term of this expression is local in time, whereasthe second one is proportional to �(t3�t1)�(t4�t1)�(t3�t2) in time-domain. The Heaviside function appears herebecause of the degeneracy of the ground state: a time in-terval between the pairs t1t4 and t2t3 can be arbitrarylarge (see Fig.1).The dual-fermion approach is essentially based on adiagrammatic expansion with respect to (4). Here itis worth to note that for the system without symmetrybreak [11] (4) !1 as temperature goes to zero, mak-ing such an expansion impossible. Therefore the sym-metry breaking solution is indeed necessary to constructa zero-temperature theory.

We restrict ourselves with the simplest approxima-tion beyond mean-�eld, that is a �rst-order diagram cor-rection to the dual self-energy:�dual"" (�) = i2� Z (4)"#"#(�; �0; �; �0)Gdual## (�0)d�0 (8)and similarly for �dual## . It would be more accurate touse the integrand with the dressed dual Green's functionGdual## , but we will stay with bare Gdual## for simplicity.In order to obtain an expression for the Green's func-tion, it is practical to use the following identity [13]:G��(�) = 1g�1�� (�)��(�)� �g��(�) + (�dual�� (�))�1��1 :(9)An important property of these formulas is that�dual�� contains the Kondo logarithm. Indeed,substituting (7) into (8) and taking into accountthat ImGdual changes its sign at the Fermi level,one �nds that Re�dual"" contains the logarith-mic singularity: (2�)�1 R U2���0�i0 ImGdual## (�0)d�0 ���1U2 log(�
=�) ImGdual## (�0), where the cut-o� 
 isabout the half-bandwidth. Further the substitution ofEq. (5) gives an estimation Re�dual"" � 2��1 log(�
=�)for the case of large U . Such a logarithmic behavior isalso reected in spectral function.The dual perturbation theory is valid while the cor-rections to the mean-�eld result are small enough. Ac-cording to formula (9), it means that the domain of va-lidity is determined by the inequality g""�"" � 1. Notethat at the Kondo energy [15] �K / exp(��U8 ) the left-hand side of this inequality equals one-half, so our theoryis formally valid only above the Kondo scale. But it isimportant to note that some of low-energy physics isalso reproduced. Namely, Friedel sum rule [15] is sat-is�ed: as one can see from (9), the divergence of �dual��corresponds to G�� = ���1.It might be interesting to observe that the situationis similar for higher-order diagrams. The n-th order di-agram for �dual�� contains n nodes and 2n� 1 inner line.Above the Kondo scale, vertices are proportional to U2(see Eq. (7)) and each inner line Gdual�� is proportionalto U�2 for U ! 1 (see Eq. (5)). Thereby the theorybehaves well above Kondo scale.Low-energy properties: analytical results fora semicircular bath. An explicit calculation of the�rst-order diagram in dual variables is a simple thoughnot trivial task. The bare dual Green's function Gdual"" (�)has an atomic pole at �U=2 (and at U=2 for Gdual## (�)) aswell as a branch cut originating from the fact that �(�)represents a system with a continuous spectrum.�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 5 { 6 2010



342 I. S.Krivenko, A.N.Rubtsov, M. I.Katsnelson, A. I. LichtensteinIn our calculation we will use a semicircular �(�):�(�) = 12 �2tD�2 (�� sgn(�)p�2 �D2): (10)Here D is the half-bandwidth, which for simplicity isput to one in all calculations below. Hybridization con-stant t describes the coupling between the impurity atomand its nearest neighbor. A calculation of the �rst-orderdiagram with a generic �(�) is obviously possible andrequires only additional one-dimensional numerical in-tegration. As it follows from the previous section, theresult will be qualitatively similar for any �(�) which issmooth at � = 0 and has a �nite bandwidth.The diagram we are going to calculate is an integralover the real axis:�dual"" (�) = �i Z d�02� �U + U2�� �0 � i0�Gdual## (�0); (11)�dual## (�) = �i Z d�02� �U + U2�0 � �� i0�Gdual"" (�0): (12)Let us examine the pole structure of the part pro-portional to U (a constant part) in the expression for�dual"" (�). Denote this part �dualU ,�dualU =� i U2� Z �(�0) d�0(�0 � U=2+i0)(�0 � U=2 + i0��(�0)) :(13)There is a pole at �0 = U=2 � i0 inherited from theatomic problem, in addition there are at most two poleswhich are solutions of the equation ��U=2 = �(�). Forour special choice of �(�) this equation is reducible tothe following system:( Re�(�) = �� U=2Im�(�) = 0 ,(�2(1�4t2)+�U(2t2 � 1)+((2t2)2+(U=2)2) = 0j�j > 1 :(14)In the case of t = 1=2 this quadratic equation turnsto a linear one and its root �0 = 12 �U + 1U � is alwaysgreater than or equal to 1. When t is not equal to 1/2,two real roots �+ and �� are possible. This is a manifes-tation of an additional state of the discrete spectrum dueto the impurity. However in the limit U � 2t the onlyrelevant root is still �+. To understand this statementit's useful to represent Re�(�) = ��U=2 equation in agraphical form (see the Fig.2).As one can see, the magnitude of t determines theheight of \shoulders" in this �gure, while U=2 is a verti-cal displacement of the diagonal line ��U=2. At U large
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Fig.2. Graphical solution of the equation Re�(�) = ��U=2enough in comparison with 2t2 (dimensionless) there isonly one intersection of the curves on the positive half-axis, i.e. �+. A complete analysis of this equation yieldsthe following results:t; U Rootst = 1=2 � = 12 �U + 1U �t 6= 1=2; 2t2 < 1; U=2 < 1� 2t2 no real rootst 6= 1=2; U=2 > j1� 2t2j � = �+2t2 � 1; U=2 � 2t2 � 1 � = �+; ���� = (U=2)(4t2 � 2)� 4t2p4t2 + (U=2)2 � 12(4t2 � 1) : (15)The both poles U=2 � i0 and �+ � i0 reside in thefourth quadrant while �(�) has a branch cut on [�1; 1].To preserve causality it has to perform an in�nitesimalshift up where � < 0 and down for � > 0. Such a dis-position of the poles permits us to choose an integrationcontour in the upper half-plane (the integrand vanishesat in�nity as ��3) and then deform it to a smaller con-tour C as shown in Fig.3.Further, the integrand of �dualU can be split into twoparts as follows �dualU = �i U2��� IC d�0� 1�0 � U=2 + i0��(�0) � 1�0 � U=2 + i0� :One can observe that the second term of the inte-grand does not contribute to the result, since it containsno singularities in the contour. To proceed with the �rst�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 5 { 6 2010
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Re eFig.3. Contour of integration for the constant part of�dual"" (�)term, we substitute the explicit expressions for real andimaginary parts of � and take into account that imag-inary part changes its sign under a transition from oneside of the branch cut to another. After some transfor-mations we obtain�dualU = U2� 4t21� 4t2 Z 0�1 p1� �02d�0(�0 � �+)(�0 � ��) : (16)This integral can be simply evaluated by a trigono-metric substitution �0 = sin�. Finally, we obtain thefollowing result:�dualU = U2� 4t21� 4t2 ���2 + L(�+)� L(��)�+ � �� � ; (17)L(x) �p1� x2 log p1� x2 + x� 1p1� x2 � x+ 1! : (18)There is no need to repeat all calculations for thesecond part of vertex (proportional to U2) (11). An ad-ditional multiplier (�� �0 � i0)�1 produces another polebelow the real axis, so it doesn't a�ect the integrationcontour in any way. This means that the last integral in(16) should be replaced withZ 0�1 d�0p1� �02(�� �0 � i0)(�0 � �+)(�0 � ��) == 1�+ � �� Z 0�1 d�0p1� �02�� �0 � i0 � 1�0 � �+ � 1�0 � ��� :In this way we have reduced the U2-part to a knownresult. The �nal expression for �dual"" (�) reads:�dual"" (�) = U2� 4t21� 4t2 ���2 + L(��)� L(�+)�� � �+ +U�+ � �� �L(�� i0)� L(��)�� �� � L(�� i0)� L(�+)�� �+ �� :(19)

An in�nitesimal imaginary part in L(� � i0) assiststo choose the right side of the branch cut. Such an imag-inary addition is not required for ��, since they do notlie on the brunch cut for any positive t and U .An evaluation of �dual## (�) repeats the previous onewith a number of exceptions:� Poles of the integrand are at �U=2 + i0 and��+ + i0.� The integration contour goes in the opposite direc-tion and surrounds [0; 1] segment.� The pole of (�0� �� i0)�1 lies above the real axis.So we have a very similar answer:�dual## (�) = ��dual"" (��): (20)By taking a limit of t ! 1=2 in formula (19) weachieve even simpler expression:�dual"" (�)jt=1=2 = ��dual## (��)jt=1=2 == �0 � U2 � 1� �1 + L(�0)� U L(�0)� L(�� i0)�0 � � � ;�0 = 12(U + 1=U): (21)This result for dual self energy should be put intothe formula for Green's function (9). We have plottedthus obtained DOS for several values of U and obtainedsmooth graphs with a clear Kondo-like peak at the Fermilevel.We found however, that the simplest �rst-order the-ory su�ers serious problems at higher frequencies. Thisissue is discussed in the next section.Renormalization procedure. The mentioneddrawbacks of the formalism presented so far are relatedto the poles of g��(�). First of all, as it follows from Eq.(9), the Green's function G�� is pinned at its mean-�eldvalue �1=� at these energy points. The only case whenthis pinning is absent is the vanishing of �dual�� at theenergy of the pole, but it seems that no �nite-order ap-proximation for G��(�) provides such a condition. Thepinning is rather unphysical, because poles of the atomicproblem are by no means special points for the entireaction (1), and there is no any sum rule about them.Further analysis shows that the theory fails also near thepoles of the atomic problem: it replaces the mean-�eldpole � = U=2 � �(�) with the two poles shifted fromthe real axis in di�erent directions. Consequently, thetheory is neither conservative, nor causal.The problems with the poles of g��(�) are probablyrelated to the pole structure of the dual Green's function.�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 5 { 6 2010



344 I. S.Krivenko, A.N.Rubtsov, M. I.Katsnelson, A. I. LichtensteinAs it follows from the second line of Eq.(5), it has twoclose poles, one of them is placed exactly at U=2 whileanother is slightly shifted from this point. The residuesof these poles have the opposite signs. We suppose thatthe series expansion breaks down in this region. Wepropose the following renormalization procedure. Sincethe pinning is absent only if dual self-energy vanishes atthe pole, G��(�pole) = 0; g�1�� (�pole) = 0; (22)its reasonable to require the ful�llment of this condition.An additional condition means that the theory must havea renormalization parameter. To introduce it, we modifythe splitting of the action into the Gaussian and Hamil-tonian parts. We rewrite the action (1) as follows:S = S0at �+1ZZ�1 dtdt0�c�t (�(t� t0) + i��0(t� t0)) c�t0 ;S0at = +1Z�1 dt�i(1� �)�c�t @@tc�t � U ~n"t~n#t + �~n�t� :(23)The parameter � is to be adjusted to maintain the con-dition (22). One can observe similiarities with the �eld-theory renormalization procedure, that is a way to solvedivergence problems by rede�nition of physical con-stants, for example, masses and interaction constants.The calculations are very similar to the above con-sidered case � = 0. The atomic problem is the same,up to scaling transformations. We obtain the followingrelations:g��(�)= ((1� �)�� U 0=2� i0)�1 ; U 0 � (1� �)�1U;(4)"#"#(�1; �2; �3; �4) = U + U 02�3 � �2 � 0i : (24)The mean-�eld approximation givesG��(�) = (�� U 0 ��(�)� i0)�1 ; (25)so that the renormalization is just results in a shift ofthe atomic resonances. Practical calculation shows that(22) is ful�lled with a small positive �, and that � growsas U decreases.A calculation of the �rst-order correction within therenormalization scheme is also similar. The only impor-tant di�erence is that Gdual�� (�) obeys high frequency as-ymptotic �1����1 for a �nite �, and therefore the contourintegration contains an additional contribution from in-

�nity. The �nal formula for the dual self-energy(19) be-comes:�dual"" (�;�) = ��dual## (��;�) == U2� 4t21� 4t2 ���2 + L(�0�)� L(�0+)�0� � �0+ �+U 022� 4t21� 4t2 1�0+ � �0� �L(�� i0)� L(�0�)�� �0� �L(�� i0)� L(�0+)�� �0+ �+ �U 02�0� = (U 0=2)(4t2 � 2)� 4t2p4t2 + (U 0=2)2 � 12(4t2 � 1) (26)Besides the renormalized band DOS, there are alsoseparated poles, corresponding to the atomic reso-nances. Their positions are shown in the Fig.4. For
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