Наблюдение вырожденного ферми-газа, плененного стоячей электромагнитной волной

К. А. Мартьянов, В. Б. Махалов, А. В. Турлапов¹⁾

Институт прикладной физики РАН, 603000 Нижний Новгород, Россия

Поступила в редакцию 19 февраля 2010 г.

Наблюдался газ ферми-атомов, плененный в пучностях стоячей электромагнитной волны. Стоячая волна создана двумя встречными лучами с длиной волны 10.6 мкм, сфокусированными в одном и том же месте. В каждой пучности удерживается дископодобное облако из 7500 атомов лития-6 в двух равнонаселенных спиновых состояниях при температуре $T = 0.1E_F$, где E_F – энергия Ферми. Система находится в режиме, нарушающем приближение локальной однородности – населены лишь 3 нижних энергетических уровня аксиального движения. Система может стать инструментом для исследования 2D фермиевской физики и 3D эффектов вне пределов приближения локальной однородности.

Широкий круг явлений многочастичной квантовой физики наблюдался в экспериментах с ультрахолодными газами ферми-атомов и их производными. В числе этих явлений - резонансная сверхтекучесть ферми-жидкости [1-4], механическая стабильность ферми-системы в режиме s-волнового резонансного взаимодействия [5], когерентная трансформация ферми-системы в бозе-систему [6], бозеэйнштейновская конденсация молекул [7-9] и, возможно, вязкость вблизи нижнего квантового предела [10, 11]. Атомная ферми-система является уникально гибкой – возможна непрерывная перестройка в широких пределах основных параметров системы длины рассеяния, плотности, температуры и населенности спиновых состояний. Благодаря этой гибкости, эксперименты с ультрахолодными атомами позволяют проверять теоретические модели, описывающие другие ферми-системы – нейтронные звезды и ядерную материю [12, 13], кварк-глюонную плазму [14], высокотемпературные сверхпроводники [15].

Во всех перечисленных экспериментах движение атомов 3D. Представляет интерес создание квазидвумерного газа ферми-атомов – газа с 2D кинетикой центров масс частиц. В первую очередь, интерес связан с изучением сверхтекучести 2D систем и моделированием высокотемпературной сверхпроводимости, особенно учитывая, что наивысшие критические температуры достигнуты в двумерных сверхпроводниках [16].

2D кинетика центра масс может быть достигнута пленением в сильноанизотропном гармоническом потенциале дископодобной формы

$$V(\mathbf{x}) = rac{m\omega_z^2 z^2}{2} + rac{m\omega_\perp^2
ho^2}{2}, \quad \omega_z \gg \omega_\perp.$$
 (1)

Если частицы населяют лишь основной энергетический уровень аксиального движения, то газ кинетически 2D. При нолевой температуре условием кинетической двумерности является малость химического потенциала, $\mu < \hbar \omega_z$. Цепочка изолированных потенциалов вида (1) может быть создана путем удержания газа в пучностях стоячей электромагнитной волны (одномерной оптической решетки вдоль направления z). Поперечная мода волны должна быть гауссова, интенсивность - достаточно высока, а частота – значительно меньше частот электрических дипольных переходов в атоме. Контролируемое повышение химического потенциала позволит изучить переход от квазидвумерной к 3D системе. При заполнении небольшого числа уровней аксиального движения может быть получена 3D система вне режима локальной однородности.

Газ ферми-атомов, плененный в одномерной оптической решетке, использовался в работах [17, 18] для интерферометрии и изучения неупругих столкновений, соответственно. В обоих случаях ферми-газ наблюдался после выключения дипольного потенциала и последующего разлета.

О прямом наблюдении ферми-газа в периодическом потенциале к настоящему моменту не сообщалось. Прямое наблюдение профиля плотности в квантовой системе позволяет видеть разделение фаз, величину среднего поля, измерять термодинамические и механические характеристики и, в ряде случаев, фазу.

В этом письме мы сообщаем о приготовлении вырожденного газа ферми-атомов в поле стоячей волны, прямом наблюдении профиля плотности и измерении температуры газа, которая составила $0.1E_F$,

¹⁾e-mail: turlapov@appl.sci-nnov.ru

Рис.1. Двумерное распределение плотности атомного ферми-газа, плененного стоячей волной, $n_2(x,z)$. Слева и внизу отложены координаты в микронах. Число атомов в одном спиновом состоянии на квадратный микрон кодировано оттенками серого – расшифровка оттенков показана справа

где E_F – энергия Ферми. Атомы заполняют лишь 3 нижних уровня аксиального движения, нарушая приближение локальной однородности. Приготовление этой системы может также рассматриваться как этап на пути к созданию квазидвумерного ферми-газа атомов.

Фотография газа представлена на рис.1. В эксперименте приготовлен газ ферми-атомов лития-6 в двух равнонаселенных сверхтонких состояниях с наименьшей энергией $|1\rangle$ и $|2\rangle$. В пределе сильного магнитного поля состояния имеют проекцию электронного углового момента $m_j = -1/2$ и различаются проекцией спина ядра, $m_I = 1$ и $m_I = 0$, соответственно.

Приготовление системы происходит методами лазерного пленения и охлаждения в несколько этапов, более или менее по сценарию [19], существенным отличием является лишь использование в нашем эксперименте дипольной ловушки с интенсивностью, периодически модулированной в пространстве. Приготовление проходит в вакуумной камере при давлении $\sim 10^{-11}$ торр. В первые 4 с в магнето-оптической ловушке (МОЛ), загружаемой из атомного пучка, происходит накопление $3 \cdot 10^8$ атомов при температуре несколько сотен мкК. МОЛ пространственно перекрыта с дипольной ловушкой глубиной 2 мК, создаваемой двумя встречными лучами с длиной волны 10.6 мкм и одинаковой поляризацией, сфокусированными в центре МОЛ и образующими стоячую волну. После выключения МОЛ в пучностях стоячей волны удерживается 4 · 10⁶ атомов. Для того чтобы продолжить охлаждение с помощью выпаривания, длина s-волнового рассеяния увеличивается до большой отрицательной величины a = -4200 бор путем включения магнитного поля $B = 1000 \, \Gamma c$, что соответствует настройке столкновений на фермиевскую сторону широкого резонанса Фано-Фешбаха [20]. В течение 1 с газ выпаривается свободно, в стационарной ловушке. Затем, в течение 0.6 с выключается один из 2 пучков, формирующих стоячую волну дипольной ловушки. В результате, продолжая испаряться и охлаждаться, газ адиабатически перегружается в веретенообразную дипольную ловушку, образованную сфокусированной бегущей волной. Частоты веретенообразной ловушки, измеренные по параметрическим резонансам, равны $\nu_{\perp\,0}/2\pi = 4300\pm 80$ Гц и $\nu_{z\,0}/2\pi = 162\pm$ 10 Гц, а глубина $U_0 = m \nu_{\perp 0}^4 / 2k^2 \nu_{z0}^2 = 530 \pm 70$ мкК, где $k = 2\pi/10.6$ мкм. Охлаждение продолжается форсированным выпариванием в течение $\simeq 2$ с, за которые глубина ловушки уменьшается до величины $U_0/2000$ по закону $U(t) = U_0(1-t/\tau)^{3.24}$, где $\tau = 2$ с, путем уменьшения мощности луча, создающего ловушку. Получившийся оптический веретенообразный потенциал имеет частоту $u_{\perp} =
u_{\perp 0} / \sqrt{2000}$ и $\nu_{z} = \nu_{z0} / \sqrt{2000}$. По окончании охлаждения в течение 0.6 с восстанавливается встречный пучок дипольной ловушки, и газ адиабатически перегружается в стоячую волну, что завершает приготовление.

По окончании приготовления газ фотографируется прибором с зарядовой связью (ПЗС). Для фотографирования облако подсвечивается импульсом (2 мкс) широкого однородного луча, направленного вдоль оси y навстречу магнитному полю и поперек оси z цилиндрической симметрии ловушки. В базисе магнитного поля луч подсвета имеет поляризацию $\sigma^$ и настроен на частоту циклического перехода $|1\rangle \rightarrow$ $|2P_{3/2}, m_j = -3/2, m_I = 1\rangle$ или $|2\rangle \rightarrow |2P_{3/2}, m_j = -3/2, m_I = 0\rangle$. Тень облака фиксируется на ПЗС.

По поглощению света рассчитывается двумерное распределение концентрации частиц в каждом спиновом состоянии, проинтегрированное вдоль направления зрения *y*:

$$n_2(x,z) = \frac{1}{\sigma} \ln \frac{I_0}{I(x,z)} + \frac{I_0 - I(x,z)}{\sigma I_{\text{sat}}},$$
 (2)

где I_0 и I(x, z) – интенсивности резонансного света до и после прохождения через облако, σ и I_{sat} – сечение поглощения и интенсивность насыщения перехода, соответственно. Измеренное распределение плотности показано на рис.1. Пространственное разрешение описанного метода оценивается в 1.2-2.0 мкм, а увеличение видеосистемы равно 24.9.

На рис.1 каждая ячейка соответствует дископодобному облаку газа, снятому сбоку. В каждом из 20 центральных облаков находится $N = 3730 \pm 260$ атомов в каждом из спиновых состояний $|1\rangle$ и $|2\rangle$. Облака находятся в потенциалах, близких по форме к потенциалу (1).

Температура измеряется по профилю плотности. На рис.2 показано одномерное распределение плот-

Рис.2. Одномерный профиль плотности, полученный интегрированием вдоль *у* и *z*. Точками показаны данные, усредненные по 20 центральным ячейкам. Черная сплошная линия – подгонка данных формулой (3), сплошная серая – подгонка гауссовым распределением

ности, полученное интегрированием по *y* и *z* в одной ячейке, а затем – усреднением по 20 центральным ячейкам. В последующем анализе мы пренебрегаем ангармонизмом пленяющего потенциала и наличием среднего поля. В анизотропном потенциале в прибли-

жении Томаса-Ферми для поперечных направлений одномерная плотность идеального газа равна

$$n_{1}(x) = -\sqrt{\frac{m\omega_{\perp}}{2\pi\hbar}} \left(\frac{T}{\hbar\omega_{\perp}}\right)^{3/2} \sum_{l=0}^{\infty} \operatorname{Li}_{3/2} \times \\ \times \left[-\exp\left(\frac{\mu_{l}}{T} - \frac{m\omega_{\perp}^{2}x^{2}}{2T}\right)\right],$$
(3)

где Li_{3/2} - полилогарифмическая функция порядка $3/2,\,\mu_l\equiv\mu-l\,\hbar\omega_z$ – химический потенциал частиц, находящихся на *l*-м уровне, а химический потенциал μ найден из условия $N = \int dx n_1(x)$. Температуру находим подгонкой данных с рис.2 распределением (3). Если бы частоты дискообразных ловушек были измерены напрямую, то единственным параметром подгонки была бы температура. В данном случае измерены частоты веретенообразной оптической ловушки, образованной одним лучом, ν_{\perp} и ν_{z} . Если фокусы встречных лучей, создающих стоячую волну, перекрыты в пространстве точно $^{2)}$, то $\omega_{\perp}=2
u_{\perp}$ и $\omega_z = \omega_{\perp} \nu_{\perp} / \nu_z$. В случае отступления от точного перекрытия значения частот ω_z и ω_\perp другие, и мы не можем фиксировать их при подгонке. Однако, если рассогласование лучей мало, величина $\omega_z^2/\omega_{\perp}$ остается неизменной. Это позволяет свести число свободных параметров до двух – температуры Т и одной из частот, например ω_{\perp} , находя вторую частоту из уравнения $\omega_z^2/\omega_{\perp} = 2\nu_{\perp}^3/\nu_z^2$. В результате подгонки получаем $\omega_z/\omega_{\perp} = 29.8 \pm 0.3, \, \omega_{\perp}/2\pi = 152 \pm 4\, \Gamma$ ц и $T = (0.10 \pm 0.04) E_F = 50$ нК. Энергия Ферми E_F невзаимодействующего газа, отсчитанная от основного уровня осциллятора, найдена из уравнения

$$N = \frac{1}{2(\hbar\omega_{\perp})^2} \sum_{l=0}^{\left[E_F/\hbar\omega_z\right]} \left(E_F - l\,\hbar\omega_z\right)^2,\qquad(4)$$

в котором суммирование происходит по всем занятым состояниям, а [...] обозначает целую часть числа. Мы нашли, что $E_F = 2.5 \hbar \omega_z$, то есть существенно заполнены нижние 3 уровня продольного потенциала. В приближении T = 0 на уровнях l = 0, 1, 2 находятся 2690, 950 и 90 атомов, соответственно, в каждом спиновом состоянии.

Полученное в результате подгонки распределение показано сплошной линией на рис.2. Для сравнения: подгонка гауссовым распределением, отвечающим высокой температуре, дает в 1.6 раза большее среднеквадратичное отклонение.

²⁾ Фокусы встречных лучей перекрыты при полной мощности. В ловушке, пониженной в 2000 раз, возможно небольшое отступление от точного перекрытия из-за тепловых эффектов, зависящих от мощности лучей.

В приведенном анализе мы пренебрегли средним полем, поскольку газ является слабовзаимодействующим – параметр взаимодействия $k_F a = -0.81$ по модулю меньше 1 ($k_F \equiv \sqrt{2mE_F}/\hbar$). Кроме того, мы пренебрегли отличием потенциала от гармонического. Более точно потенциал оптической решетки описывается формулой

$$V_s(\mathbf{x}) = sE_r \left(1 - \exp\left[-\frac{m\omega_{\perp}^2 \rho^2}{2sE_r} \right] \cos^2 kz \right), \quad (5)$$

при записи которой мы пренебрегли дифракционной расходимостью лучей, поскольку их рэлеевская длина $z_R = 1.20$ мм много больше центральной области рис.1 длиной 106 мкм, использовавшейся для анализа. В этом выражении $E_r = \hbar^2 k^2/2m$ и s – энергия отдачи и безразмерная глубина решетки, соответственно. Зная частоты, находим $s = (\hbar \omega_z/2E_r)^2 = 58$ и $sE_r = 3.8\hbar\omega_z = 820$ нК. Наличие ангармонизма при тех же частотах приводит к увеличению поперечного размера облака идеального ферми-газа на 8%. В то же время, среднее поле приводит к уменьшению размера на 12%. Последняя оценка получена в приближении 3D локальнооднородного газа в параболическом потенциале при T = 0 с использованием уравнения состояния

$$\mu = \frac{\hbar^2}{2m} \left(6\pi^2 n \right)^{2/3} + V(\mathbf{x}) + \frac{4\pi a\hbar^2}{m} n.$$
 (6)

Таким образом, два систематических эффекта, не учтенных в уравнении (3) и процедуре подгонки, малы и почти полностью компенсируют друг друга, не внося существенной ошибки в найденную температуру и частоты дископодобной ловушки.

Необходимым условием квазидвумерной кинетики в данной системе является малость химического потенциала, $\mu < \hbar \omega_z$. Переход к квазидвумерности может быть достигнут увеличением отношения ω_z/ω_{\perp} или снижением числа частиц в каждой ячейке. Для перехода к кинетической двумерности в почти идеальном ферми-газе необходимо выполнение условия $N < (\omega_z/\omega_{\perp})^2/2$.

Авторы благодарят за финансовую поддержку исследований национальный проект "Образование", программы президиума РАН "Квантовая физика конденсированных сред" и "Нелинейная динамика", Российский фонд фундаментальных исследований (гранты # 08-02-01249-а, # 08-02-01821-э_б). А.Т. благодарит "Фонд содействия отечественной науке".

- J. Kinast, S. L. Hemmer, M. E. Gehm et al., Phys. Rev. Lett. 92, 150402 (2004).
- J. Kinast, A. Turlapov, and J. E. Thomas, Phys. Rev. Lett. 94, 170404 (2005); arXiv:cond-mat/0502515.
- M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek et al., Nature 435, 1047 (2005); arXiv:cond-mat/0505635.
- S. Riedl, E. R. S. Guajardo, C. Kohstall et al., arXiv:cond-mat/0907.3814v1, 2009.
- M. E. Gehm, S. L. Hemmer, S. R. Granade et al., Phys. Rev. A 68, 011401(R) (2003).
- M. Bartenstein, A. Altmeyer, S. Riedl et al., Phys. Rev. Lett. 92, 120401 (2004).
- S. Jochim, M. Bartenstein, A. Altmeyer et al., Science 302, 2101 (2003).
- M. Greiner, C. A. Regal, and D. S. Jin, Nature 426, 537 (2003).
- M. W. Zwierlein, C. A. Stan, C. H. Schunck et al., Phys. Rev. Lett. 91, 250401 (2003).
- A. Turlapov, J. Kinast, B. Clancy et al., J. Low Temp. Phys. 150, 567 (2008).
- 11. J. E. Thomas, Nucl. Phys. A 830, 665c (2009).
- 12. G.A. Baker, Jr., Phys. Rev. C 60, 054311 (1999).
- 13. H. Heiselberg, Phys. Rev. A 63, 043606 (2001).
- P. F. Kolb and U. Heinz, Quark Gluon Plasma 3, chapter Hydrodynamic description of ultrarelativistic heavy-ion collisions, p. 634, World Scientific, 2003; arXiv: nuclth/0305084.
- Q. Chen, J. Stajic, S. Tan, and K. Levin, Phys. Rep. 412, 1 (2005).
- Ю.В. Копаев, В.И. Белявский, В.В. Капаев, Успехи физических наук 178, 202 (2008).
- G. Roati, E. de Mirandes, F. Ferlaino et al., Phys. Rev. Lett. 92, 230402 (2004); arXiv: cond-mat/0402328v1.
- X. Du, Y. Zhang, and J. E. Thomas, Phys. Rev. Lett. 102, 250402 (2009).
- L. Luo, B. Clancy, J. Joseph et al., New J. Phys. 8, 213 (2006).
- S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).