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We derive the four-point vector correlators in QCD from AdS/QCD correspondence. It is shown that
meson poles are correctly reproduced. The final expression also suggests a nonzero amplitude in the limit of
zero virtuality of two longitudinal photons. This fact does not mean that one can produce, absorb or scatter

real longitudinal photons.

I. Introduction. It is known that some strongly
coupled gauge theories have a dual description. In
the recent years several effective models of AdS/QCD
duality were suggested. For example, a simple five-
dimensional framework in a curved background intro-
duced in [1] appears to be useful for obtaining low-
energy quantities. Namely, in this model with only
three free parameters one can reproduce lightest meson
masses, their decay rates and couplings with a surpris-
ingly good precision. The model is described in the next
section.

In the present paper we derive the four-point vector
current correlator in QCD in the strong coupling limit
within AdS/QCD model introduced in [1].

We introduce an additional dilaton field [2] in order
to reproduce Regge behavior of meson masses at large
energies. It is shown that our result correctly reproduces
meson spectrum at small and at large energies. The ex-
pression (8) suggests the final answer for the QCD four-
point vector correlator.

We also calculate the four-point vector current corre-
lator with two conserved and two longitudinal currents.
The expression (11) shows that the resulting amplitude
is finite when virtuality of longitudinal photons tends to
zero. This naively suggests that there is a nonzero pos-
sibility to emit real longitudinal photons. In the con-
trary, gauge invariance strongly prohibits the possibil-
ity of producing, absorbing and scattering real longitu-
dinal gauge particles in physical processes. Athought
the processes involving virtual longitudinal gauge parti-
cles exist and give the essential contribution to the full
cross-section, this does not explain the contradiction.
An analogous problem was already discussed in [3, 4]
in the context of processes in massless quantum elec-
trodynamics. It was shown that such a contradiction
has a physically sensible explanation. On the one hand,
it happens that the amplitude in the limit of longitudi-
nal photon zero virtuality is not smooth. This implies

Mucema B KIIT® Tom 91 Bemm. 9-10 2010

that one can not judge about real longitudinal photon
interaction by this limit. On the other hand, although
the discussed processes can in principle be observed in
deep inelastic collisions, the smallest experimentally de-
tectable virtuality p? is of order E/L (E is photon energy
and L is the characteristic apparatus size).

An additional Chern-Simons term can be introduced
to the theory [5—7]. In the case of vector correlator its
contribution is zero as it has the form Scs[Ar]—Scs[4r]
with A, = A = V.

We also derive some particular kinematic limits and
show that the result has a symmetric form. Namely,
if two external momenta are on-shell, the resulting four-
point function is symmetric with respect to the exchange
of any other two squared momenta and the s Mandel-
stamm variable.

In the next section we briefly discuss the model. In
the section III the general form of four-point vector cor-
relator is given. In the section IV we consider some
particular limits, and the conclusions in the section V
complete the paper.

II. The model. The simple holographic five-
dimensional model of QCD suggested in [1] describes
dual dynamics of left- and right-handed currents corre-
sponding to the SUy, (Ny) x SUg(Ny) chiral flavor sym-
metry of QCD. The 5D action

1
S:/d‘*acdze’q’\/gTr |DX|2-|-3|X|2—4—g2 (F2+F3)
5

1)
(DuX =0, X —iAL, X +iX Ary, g5 = 1272 /Ny), writ-
ten in the anti-de Sitter metric,
1
ds? = = (—dz? + da*dz,) , (2)

is defined for three fields. These are the scalar X% in bi-
fundamental representation of SUr,(Ny) x SUgr(Nf) and
left and right gauge vector fields Af ,, Ag, (correspond-
ing to chiral left- and right-handed currents). In these
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terms, the four-dimensional QCD theory lies on AdS
boundary. It is more convenient for us to use vector
V' and axial Aj gauge fields defined by AL =V + 4,
Ar =V — A. They describe vector and axial currents
in 4D theory. See [1] for details.

The model at hand must include in some way a pa-
rameter of dimension of mass responsible to chiral sym-
metry breaking. It is its presence that allows one to re-
produce low energy physics. We consider two simplest
ways to introduce this parameter. The hard-wall model
[1] corresponds to the special case when the dilaton field
® is zero and the AdSs space is cut at some “infrared”
point z = zg (21 = 1/323 MeV). The second case
corresponds to the so called soft-wall model when the
external dilaton field ® = A%2% (A ~ 300 MeV) gives
the scale parameter for the theory. It provides the cor-
rect meson Regge trajectories [2]. We derive all expres-
sions in the general way so that they can be applied for
both models. Some of their differences are compared in
section IV.

Throughout this paper the gauge Ay, = Ag, = 0 is
used and u, v, @, ... stand for 4-dimensional indices.

Finally, it is necessary to impose boundary condi-
tions for the fields at hand. We put Ay, = Ar, =0
at z = 0 and appropriate boundary conditions at large
z. For the hard-wall model we take 9,FL(z = 2zg) =
0.Fr(z = z1r) = 0; for the soft-wall model one should
take the natural boundary conditions at z = co to make
the action finite. See below about the X field boundary
conditions.

Let us write the classical quadratic equations of mo-
tion for left and right vector fields (Ar, or Ar):

6_§(Z) 5 6_§(Z)
Ae L8, A =
- . a) L+ ———0,0,45 =0
(3)

In this way, using the appropriate boundary conditions,
the solution to the equation (3) correctly reproduces me-
son spectrum. (Whereas the hard-wall model reproduces
correctly only low-lying meson spectrum.) Namely, we
introduce vector field propagator (in the 4D momentum
representation)

Guu(k5 2, Z’) =

kk,
_ (g,w _ 2_2> Gz (2, 2) +

(2,2), (4)

—%(2)

—&(z)
[aze . 8, + k2 <

] Gia2(z,2') = i6(z — 2'). (5)

Here &, is a 4D momentum. Note that longitudinal part
of G,u(k,z,2') does not depend on k. The k? poles

of Gj2(z,2') correspond to meson masses in this holo-
graphic model and are in good agreement with experi-
mental data.

The vacuum in this theory corresponds to A =
Agr = 0. Let us tell some words about the X field bound-
ary conditions [1]. In the model without a dilaton field
the solution on a vacuum X state is

1 1,
X = 5Mz-|-52z ) (6)

where the matrix M corresponds to the quark mass
matrix and ¥ can be viewed as a quark condensate,
¥ = (g°¢%). In the model with a dilaton field the
expression (6) must be considered as a boundary condi-
tion at UV (small z). We choose the simplest possible
case when both matrices are proportional to unit ma-
trix, M = my1, ¥ = o1. In this way, the X field itself
is proportional to the unit matrix and drops out from
our computations.

As the AdS/QCD duality suggests, connected
Green’s functions in QCD can be generated by differ-
entiating the classical five-dimensional action (1) with
respect to the sources (UV boundary conditions on
Ar(z,z) and Ar(z,z)). The classical five-dimensional
action can be easily derived by summing the tree Feyn-
man diagrams. Particularly, to obtain the four-point
vector Green’s function we need to sum over four graphs

(see Figure). In order to make the expression finite
(a)

Four-point Feynman graphs as viewed from a 5D theory.
Free legs correspond to “bulk-to-boundary propagator”

at the UV boundary (small z) we introduce a cutoff
z = € = 0 and follow the renormalization procedure
[8]. Note again that the field X does not interact with
the vector field V? as their interaction refers to the
commutator [V,, X] with the vacuum field X which is
proportional to the unit matrix. In the derivation of
four-point function of axial vector fields one needs to
include an extra diagram representing an intermediate
X field particle exchange.

III. Vector four-point functions. A. Conserved
currents four-point function. Let us discuss the first
vector four-point function — the holographic dual of cor-
relator of four conserved vector currents in 4D theory,
i.e. when there are no sources for the axial field A5 (=, z)
and the source for the vector field is V?(z, €) = vy, (z),
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Ouv;(z) = 0. The answer can be easily obtained by
summarizing the Feynman graphs (Figure):

abcd

SS(J—aJ—aJ—aJ-) 4 oz,B'yzs

(J—a 1,4, J—) vfavgﬁvg'yvgb

(7)

Wiy (L, 1,1, 1) =

ANl

where v, = v (k;) is a Fourier transformation of v}, (z),
kyvg; (k) = 0. It is not difficult to understand the mean-
ing of wg%cfyi&. As it is already mentioned, the differ-
entiation of (7) with respect to the sources vy, (k) gives
the result of calculation of 4D vector four- pomt function
from its 5-dimensional perspective. The explicit expres-

sion is

é“wmwmwwwuﬂx

% [fabefcde (ga'yg,[% _ gaégﬁﬁy) + facefbde (gaﬁg’yé _ ga6g,8*y) + fadefbce (gaﬁg'y6 _ ga'yg,ﬂé) ] +

!
+4i [/ & () &

z 2!

9™k k] + g°P (kTKS —

OV (Vo (2)G oy e (22 7') Va2V ()]f“?ﬁ“

x (97K — gPVRSKD + 9P kgh] —

kik3) +

1
+7 (BE = 1) + 30700750 — ) O — k)] +

il [ e e
z z!

+ [two transpositions} } .

Here fo%° — structure constants of SU(N;) and
Vi(z) = V(k?,z) are the “bulk-to-boundary propaga-
tors” which satisfy (5) with zero right hand side and
subject to the boundary conditions V (k% e) = 1 (and
appropriate zero conditions at z = zg or z = 00).

The transverse part of the last term in the fifth line
is taken with respect to ky + ko = —ks — k4, i.e.

(ky — k)" (ks — ka) " =
P B (7 — k3) (3 — k3)
= (k1 — k2) (ks — k4) + o+ kz) (9)

Let us describe the meaning of these terms. The
first term is obtained just from the 4-vertex interaction
of gauge fields (the graph a on Fiure), the second is
the interaction via the virtual transverse vector particle
and the third one is obtained from the interaction with
longitudinal vector particle. The three terms of (8) are
actually obtained from the diagrams a and b on Figure,
and the answer needs to be symmetrized with respect
to the permutations of V in the second and third terms.
That is why we sum over two transpositions in (8) (di-
agrams c¢ and d on Figure).

The integral in the square brackets in the first term
of (8) has a UV divergency when € — 0. Indeed, at small
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WA (2)Va(2)Go (2, ) Vi (') Vi (= )] ate peci gad 16

(k2 — k3) (k5 —

k2
- 4)
(}cl 132)

(8)

z ®(z) = 0, Vi(z) ~ 1 and we have [, & ~ Ine. This
UV divergency can be eliminated by adding a boundary
conterterm to the action [8]. In the particular case this
means that replacing e — p, where p is the UV regula-
tor, is sufficient. The second and the third terms in (8)
are finite, and after renormalization the whole answer is
UV finite.

B. Two conserved and two longitudinal currents.
In the same way one can obtain the expression for the
four-point vector current correlator in the case of two
conserved and two longitudinal currents. This means
that we consider the third, nonphysical polarization of
vy, (k) (the third solution of k,vj (k) = 0) and take the
limit k2 — 0. Thus, the expression written below can
be obtained from (8) by taking v, (k3) and v (k4) as the
third polarizations and taking the limit k:3’4 —) 0.

We denote conserved currents v (k) like in the pre-
vious subsection, V(k,e) = vj(k). For longitudinal
currents V! (k,e) = k,v®(k). The corresponding five-
dimensional holographic action can be written as follows

1

Ss (L, L I, 1) = wag (L, L, I, 1)) viav3gv5vg.  (10)

As in the previous subsection, w3% represents the holo-

graphic dual of four-point vector correlator in QCD,
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1

wB (L L) = {— [
5

ad By

% [fabefcde (ga'ygﬂé — g%y
dz

S

dz

2
) + facefbde (gaﬂg76

—&(s dz' _ 5 abe pec
e~ % )76 & )VI(Z)VZ(Z) G(k1+k2)2 (z’zl):| f ' f *x

2RV, (2)Va (z)] kS KD x

_ gaégﬁﬁy) + fadefbce (gaﬁg’yé _ ga’yg[%

)]+

1
x (k1 + ky)” [kg‘kf — kg kG + 9% (ky — k2) " (s — k4)L] +

dz

v
z

a.B
% ga,B _ k3 k4
(k1 + kg)

dz'

z

d
9z —2(2)
z

A

+ [one transposition 3 < 4] } .

One should remember that “bulk-to-boundary” prop-
agator for longitudinal particle is equal to unity:
V(k?,z) = 1. This is the reason why only two V are
present in z integrals in (11). Thus, the first term is
obtained from the graph a on Figure, the second term
represents the graph b. The third and fourth terms are
obtained from the graph ¢. The transposition of k3 and
k4 gives the graph d. Note that longitudinal intermedi-
ate particle also contribute to the final expression.

Thereby, formulas (8) and (11) represent the holo-
graphic QCD predictions for the four-point vector cur-
rents correlators. Apart from color and Lorentz struc-
ture they contain nontrivial external momenta depen-
dencies represented as integrals over the fifth coordinate
in the AdS space. It is instructive to analyze these de-
pendencies in some particular cases. For both formulas
(8) and (11) we consider two cases: all external photons
are real, two of them are virtual.

IV. Particular limits. The z-dependent integrals
in (8) and (11) represent nontrivial, non-perturbative
contributions to the correlators. Apparently, they are
expressed as one-dimensional tree Feynman diagrams.
There are two types of such integrals: contact integrals
(the first lines in (8) and (11)) and terms represent-
ing one-particle exchange. Contact terms diverge and
should be regularized [8]. One-particle exchange terms
are finite. It is possible to calculate some particular lim-
its of one-particle exchange terms in hard-wall and soft-
wall models explicitly. Namely, the processes involving
two real (or nearly real) external photons, which have
unity “bulk-to-boundary” propagators V = 1.

Y
e & )—,6 & )VI(z)G(kH-k:a)2 (z’zl) Vz(ZI)

= 67<I>(z’)‘/-1(z)G0 (Z, Z’) ‘/z(zl):l facefedb . kgkf

:| faCEfedb %

2) [(k1 4 k)? — kf] [(k1 +kg)? — kg] +

kik3
(k1 + ks)®
(11)

A. All four photons are real. The most simple limit
is to put all the external momenta on shell: k7 = 0.
Note, in this case the terms in Eqgs. (8) and (11), which
represent the interaction of particles via the intermedi-
ate longitudinal particle vanish. The next simplification
comes from the fact that all V;(z) = 1. This means that
there is only one type of nontrivial z-integral:

d dz' '
; —zefé(z)z—zle*q’(z )G, (2,2').

I, (12)

z

This integral can be calculated precisely in both hard-
wall and soft-wall models. To do so, let us introduce the

function
!
K =i [ Ee*6,(22),  13)
z
which satisfy the equation
e—d>(z)
(zeﬂz)az d. + s> K, (z) = 1. (14)

For the soft-wall after changing the variables t = A222
and shifting K, Eq. (14) turns into Kummer’s equation
with the parameters a = —s/4A%, b = 0. For the hard-
wall model the solution of Eq. (14) is just Bessel func-
tions. For any model we write

K,(2) = (15)

1=V ),
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where V (s, z) coincide with V' (k?, z) defined in (8) and
(11). For the hard-wall and soft-wall models respectively
we obtain

Vhw(s5 Z) =

_ 2 J1(v/32) Yo (vazm) — Jo (Vszr) Vi (v/52)
e Ji (v3€) Yo (vszr) — Jo (v/s21r) Y1 (V/s€) '

U (—ﬁ,o,zﬁﬁ)

Ve = U (—ﬁ,O,Azé) ’

(16)

where J,,(2), Y, (2) — Bessel functions, U(a,b, z) — the
confluent hypergeometric function U.

Performing integration in (12) gives for the hard-wall
model

= [Gerr ) -
z

1 2 Y.
== {ln PR 4 gy IO (\/EZIR)} (17)

4 v Jo (\/EZIR)

(v is Euler’s constant). At large s IV behaves as

1 522 2w
Iy —{n IR 49y T
g 25{n 4 teyomd 1+tan(\/§zm)}
(18)

The structure of I'% at large s is particularly remark-

able. Apart from the logarithm and the constant term in

brackets it contains all the “mass” poles s = m2 ~ n2.
The analogous expression can be written for the soft-

wall model,

I:w — /%eiq)(z)Ks(z) _ H_s/4A2
z

S (19)

where harmonic number function for integer n is defined
as Hy =Y, _, - As s > o
1

S s
v — (I s 2
s 2s(n4A2+7+”°°t4A2)’ (20)

and soft-wall model correctly reproduces Regge poles
s =m? ~ n. As we see, the pole structure is different in
each model, but large s dependence remains the same.
This means that one can calculate large s dependence in
“any-wall” model (with any z dependence in IR region)
and it will coincide with hard/soft-wall model results,
but the pole structure may be different.

It could be also useful to calculate (12) for slightly
virtual particles, but computation gives the same Ins
dependence, where s can be any k2.

B. Only two photons are real. In the limit k? = z,
k3 =y, k2 = k? = 0 it is not possible to compute all the
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z integrals in (8) and (11) even in the large s limit. But
one can take the integral of type

I(z,y) =

d dz' ,
—1 fefq)(z)z—z,efé(z WV (z,2)Gs (2,2') V(y, 2').(21)
It can be computed in both models. To do so, let us
introduce the function
!
KV () =—i [ &

s’y

e NG, (2,2) V(y,2), (22)

Z’
which satisfy the Eq. (14) with V (y, z) at right hand side

instead of 1. The solution for the equation

s
Kq(2) + Y
s—y y—s

Ky(2)  (23)

is a linear combination of K (z) defined in (13).
the integral (21) can be computed:

Now,

dz _g¢,
L) = [ Ze V@ IR -

S

=

d dz' '
@ 2 -tV (1, )Gy (2, 2') —
s—y z z

!
_Z'L/%e—‘l’(z)d_ze—q’(zl)v(x,z)Gy(z,z'). (24)

y— S z z!
Repeating again the trick in Eqs. (22), (23) we obtain

32

Ii(z,y) = mfs +
3172 y2
C e gy

It is worth mentioning that the last expression is
symmetric in s,  and y.

V. Conclusions. In the present paper we made the
predictions for the strong coupling limit of four-point
vector correlators in QCD from AdS/QCD. The final ex-
pressions are represented by formulas (8) and (11). The
answer includes the nontrivial external momenta depen-
dent factors, which are represented as integrals over the
fifth coordinate. We have also computed some particu-
lar on-shell and large-energy limits and found that these
integral factors correctly reproduce meson spectrum at
small and at large energies.

The nonzero expression (11) suggests naively a
nonzero possibility of emitting real longitudinal photons.
This is not the case [3, 4]. The 5-dimensional gauge in-
variance prohibits this. The explanation of the paradox
is related to the fact that the limit of longitudinal photon
zero virtuality is not smooth. The virtual longitudinal
photon processes contribute to the full amplitude and
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cross-section. Such processes in principle could be de-
tected in the experiment of deep inelastic scattering but
the smallest observable photon virtuality is of order E/L
with L being the typical apparatus size.

The log s dependence does not coincide with what
was obtained in [10] for planar A" = 2 super Yang-Mills
theory.

It will be interesting to make the similar derivations
for the axial four-point correlators as it requires includ-
ing the contribution of the axial current interaction with
the scalar field. Moreover, the Chern-Simons term may
also give contribution. See also recent papers [9,11—14]
on the subject.
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