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 2010 May 25Spontaneous breaking of four-fold rotational symmetry intwo-dimensional electronic systems explained as a continuoustopological transitionM.V. Zverev+1), J.W. Clark�, Z. Nussinov�, V.A.Khodel+�1)+Russian Research Centre Kurchatov Institute, 123182 Moscow, Russia�McDonnell Center for the Space Science and Department of Physics,Washington University, St.Louis, USASubmitted 19 AprilThe Fermi liquid approach is applied to the problem of spontaneous violation of the C4 symmetry instrongly correlated two-dimensional electronic systems on a square lattice. The symmetry breaking is tracedto the existence of a topological phase transition. This continuous transition is triggered when the Fermi line,driven by the quasiparticle interactions, reaches the van Hove saddle points, where the group velocity vanishesand the density of states becomes singular. An unconventional Fermi liquid emerges beyond the implicatedquantum critical point.The breaking of fundamental symmetries in groundstates of strongly correlated two-dimensional (2D) elec-tron systems [1 { 6] remains one of the most intenselydebated topics in low-temperature condensed matterphysics. Kivelson, Fradkin, and Emery [7] were the �rstto discuss the case of nematic phase transitions, well be-fore relevant experimental data was obtained. Somewhatlater, Yamase and Kohno [8] (within t � J model) andHalboth and Metzner [9] (within the Hubbard model)attributed the breaking of four-fold symmetry to viola-tion of a Pomeranchuk stability condition [10] associatedwith antiferromagnetic 
uctuations.Subsequently, much theoretical work has been aimedat elucidating salient features of this phenomenon, pri-marily within mean-�eld theory [11 { 17]. It is instruc-tive to recognize that the approach taken in these ef-forts bears a striking resemblance to that employed byBelyaev �fty years ago to describe quadrupole defor-mation in atomic nuclei [18]. To determine the criti-cal point at which the spherical shape becomes unstableand calculate the nuclear deformation beyond this point,he introduced an e�ective Hamiltonian with separablequadrupole-quadrupoleQ1Q2 interaction. Analogously,for two-dimensional tetragonal electronic systems, a sep-arable interaction d2(p1)d2(p2) with order parameterd2(px; py)= cos px� cos py is adopted in the mean-�eldtreatments of the breakdown of C4 symmetry, momentabeing measured in units of the inverse lattice constant.However, such an e�ective Hamiltonian with separableinteraction is appropriate only in the channel where sym-metry breaking occurs. Moreover, even in this channel1)e-mail: zverev@mbslab.kiae.ru, vak@wuphys.wustl.edu

a mean-�eld approach may be inadequate, as exhibitedfor example in the prediction of a �rst-order phase tran-sition in the case of violation of point-group symmetrieson a square lattice [19].Burdened with variety of inconsistencies, the mean-�eld description of nuclear deformation was supersededmany years ago by the more sophisticated Fermi-liquid(FL) approach [20]. Following this successful precedent,we work within the FL framework to obtain a betterunderstanding of C4-symmetry breaking in electron sys-tems on a 2D square lattice. Intensive numerical cal-culations assuming a �nite-range exchange interaction,supported by complementary analysis of a simpli�edmodel, disclose unexpected features of the phenomenon.In contrast to the description given by mean-�eld the-ory, we �nd that the breakdown of C4 symmetry is as-sociated with a topological phase transition that occursunder conditions that allow the Fermi line, calculatedwithin FL theory, to reach the van Hove saddle points(0; �); (�; 0); (0;��); (��; 0).Consideration of topological transitions dates backto an article by I. M. Lifshitz [21], in which the formof the single-particle spectrum �(p) was assumed tobe known. However, within FL theory �(p) is itself afunctional of the quasiparticle momentum distributionn(p) = [1 + exp ((�(p)� �)=T )]�1. Accordingly, self-consistent inclusion of the interactions between quasi-particles may lead to unforeseen types of the topologi-cal transitions [22 { 33]. We �nd just such a case in theproblem of C4-symmetry violation.Stated simply, topological transitions in correlatedFermi systems are signaled (at zero temperature) by achange of the number of roots of equation578 �¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 9 { 10 2010



Spontaneous breaking of four-fold rotational symmetry : : : 579�(p; nF ) = �; (1)where nF is the Fermi step distribution and � is thechemical potential. For a thorough development of theconcept, see the review by Volovik [30]. Throughout, weadhere to his rigorous quantitative de�nition of topolog-ical phase transitions, as distinguished from looser no-tions such as transitions between large and small Fermisurfaces that are also prevalent in the literature.Analysis of topological phase transitions in fermi-onic systems is greatly facilitated by the absence of crit-ical 
uctuations of any order parameter at the transi-tion point and its vicinity, meaning that the Landau-Migdal quasiparticle picture retains its validity. Thus,the physical many-fermion system may be viewed as asystem of interacting quasiparticles, and C4-symmetryviolation can be investigated using the fundamental FLrelation [34, 35]@�(p)@p = @�0(p)@p + 12Tr Z F��;��(p;p1)@n(p1)@p1 d�1:(2)In this relation, d� = dpxdpy=(2�)2 is the volume ele-ment of 2D momentum space, �0(p) is the bare single-particle spectrum, and F is a phenomenological interac-tion function depending only on the momenta p and p1of the colliding quasiparticles.Our goal is to analyze the impact of antiferromag-netic 
uctuations on electron spectra calculated usingEq. (2). Taking account of these 
uctuations in the inter-action function F presents little di�culty in the regimefar from the antiferromagnetic phase transition, since the
uctuation exchange can be treated within the Ornstein-Zernike approximation. The part of F responsible forthe exchange is then given byFe��
�(p;p1) = �2����
� �(p�p1�Q)2 + ��2��1 ;(3)where the constant � represents the spin-
uctuation ver-tex and Q = (�; �) the antiferromagnetic wave vector,while � denotes the correlation radius. Result (3) re-lies on the fact that the interaction function F coincideswith a speci�c static limit of the quasiparticle scatter-ing amplitude whose initial and �nal energies are on theFermi surface, such that this quantity is energy- andfrequency-independent [34, 35].Inserting Eq. (3) into Eq. (2) and evaluatingthe spin-
uctuation contribution aided by the identity2����
� = 3����
� � ����
�, one arrives at�(p) = �0(p) + fa Z n(p1)(p� p1 �Q)2 + ��2 d�1; (4)

where fa = 3�2=2. The chemical potential �, being con-stant along the Fermi line, is determined by the normal-ization condition R n(p) 2d� = �, where factor 2 assumessummation over two spin projections.Numerical solution of the 2D nonlinear integral equa-tion (4) is extremely time-consuming since it is necessaryto compute to high precision to rule out spurious signalsof broken symmetry.Calculations have been performed in the case of anopen Fermi surface, assuming a tight-binding spectrum�0(p) = �2 t0 (cos px + cos py) + 4 t1 cos px cos py; (5)with the input parameters t0, t1 and the chemical poten-tial � taken to ensure a rather small distance betweenthe tight-binding Fermi line and the saddle points. A�nite-range interaction functionf(q) = fa �(q �Q)2 + ��2��1 (6)is adopted, with � = 30. Salient results are reported forstrategically chosen values fa = 1:0 and 1:5 of the cou-pling parameter (in units of 2t0), and at temperaturesT = 10�2 and 10�4 (also in units of 2t0). It is worth not-ing that the approach based on Eq.(4) is self-consistentprovided the dimensionaless parameter faN(0) is rathersmall, N(0) ' 1=(2�t0) being the density of states of2D electron gas on square lattice with the tight-bindingspectrum (5).The numerical calculations, as represented here inFigs.1{3, reveal some remarkable features of the qua-siparticle rearrangement responsible for violation of C4symmetry. One conspicuous feature, well documentedin the �gures, is that only those quasiparticles residingin domains close to the saddle points are noticeably af-fected by the inclusion of antiferromagnetic 
uctuationsin the FL treatment.To understand of the onset of symmetry breaking, itis most instructive to track the distance between neigh-boring points where the Fermi line crosses the border ofthe Brillouin zone. This distance is found to shrink asthe coupling constant fa is increased toward a criticalvalue lying between 1:0 and 1:5. Breakdown of C4 sym-metry presumably occurs for a critical coupling fac atwhich the two crossing points merge with one anotheras they embrace and converge upon the nearby saddlepoint. As seen in Fig.1, the Fermi line (thick solid /red on-line) calculated at temperature T = 10�4 (ef-fectively zero) for a coupling constant fa = 1:5 lyingbeyond the critical point does indeed violate x� y sym-metry; the corresponding Fermi line for fa = 1:0 (long-dashed/green) does not. Another feature worthy of noteis the e�ect of temperature in suppressing the symmetry�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 9 { 10 2010 7�
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Fig.1. Fermi lines computed for the Fermi-liquid-theorymodel assuming bare tight-binding spectrum (5) witht1=t0 = 0:45 and �nite range interaction (6) with � = 30.Panel (a): Results for fa = 1:5 and T = 10�4 (both inunits of 2 t0). Thick solid line (red on-line): one of twoidentical solutions with spontaneously broken C4 symme-try. Only the �rst quadrant of the Brillouin zone is drawn,since neither px ! �px nor py ! �py re
ection symme-try is broken. Thin solid lines: Fermi lines for the baretight-binding spectrum �0p and its counterpart. Panels (b)and (c): two shaded squares adjacent to the saddle points(0; �) and (�; 0) present in panel (a) are magni�ed. TheFermi-line solution with broken C4 symmetry appearing inpanel (a) (thick solid/red line) is drawn together with twox� y-symmetrical solutions corresponding respectively tofa = 1:0 and T = 10�4 (long-dashed/green line), and tofa = 1:5 and T = 10�2 (short-dashed/blue line)breaking phenomenon. Comparison of the deviations ofthe Fermi line calculated at fa = 1:5 and T = 10�4 fromthe symmetry-preservingFermi line obtained at fa = 1:5and T = 10�2 (short-dashed/blue) demonstrates that C4symmetry can be restored by elevating the temperature.Results from calculations of the magnitude v(p) == j@�(p)=@pj of the group velocity along the Fermi lineare plotted in Fig.2. These results demonstrate that theimpact of antiferromagnetic correlations, as described byEq. (3), is only signi�cant for quasiparticles in momen-tum domains adjacent to the saddle points. The smallgap between the values for v given by the bare tight-binding model and by the Fermi-liquid-theory treatment,

4

2

0 p/4 p/2

p

p

py

px0

jFig.2. Group-velocity magnitudes v = j@�(p)=@pj (in unitsof 2t0), evaluated along the Fermi line as a function of theangle ' de�ned in the inset, for di�erent single-particlespectra �(p). Results are shown for the bare tight-bindingmodel with the same parameter choice as in Fig.1 (dash-dotted/brown line) and for the Fermi-liquid-theory modelof Fig.1 at fa = 1:0, T = 10�4 (dotted/green line);fa = 1:5, T = 10�4 (solid/red line); and fa = 1:5,T = 10�2 (dashed/blue line). Broken C4-symmetry ofthe solid/red curve with respect to x� y exchange is man-ifested by its di�erent behavior in the two shaded areasclose to the saddle pointsseen in domains away from the saddle points, is dueprimarily to a shifting of the location of the Fermi linetriggered by the antiferromagnetic correlations. On theother hand, the group velocity v evaluated at fa = 1:5and T = 10�4 (solid/red line) is seen to acquire an x�y-anisotropic component close to the saddle points.Fig.3 presents results from calculations of electronspectra at T = 10�4 in the direction perpendicular tothe Fermi line. Far from the saddle points, the impactof antiferromagnetic 
uctuations is again found to be mi-nor, but in their vicinity the e�ects are very strong. Inparticular, the particle and hole spectra cease to be alike;the average slope of the hole spectrum noticeably exceedsthat of the particle spectrum. One might attribute thisdi�erence to the variation of Fermi-line contributions toEq. (2) associated with a turning point emerging in thetrajectory of the Fermi line at the critical point. Fromall the results discussed above, we infer that the descrip-tion of the rearrangement of the ground state in termsof a single d2 parameter is a poor approximation.To further analyze and interpret the results obtainednumerically for the �nite-range interaction (6) and baretight-binding spectrum (5), we simplify the interaction�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 9 { 10 2010
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–0.4Fig.3. Single-particle spectra �(p) (in units of 2t0) eval-uated along two lines in the momentum plane (as indi-cated with corresponding type/color coding in the insets).The Fermi-liquid theory model used for Fig.1 is appliedat T=10�4 with fa=1:0 (upper panel) and fa=1:5 (lowerpanel). Spectral curves are plotted versus the normal com-ponent pn of the momentum, measured with respect tothe Fermi line. In the insets, the dashed/blue line coin-cides with the diagonal of the zone, while the solid/redline crosses the relevant hot linefunction in the manner of Ref. [27], replacing the ex-change term (3) by an in�nite-range formf(q) = (2�)2f0 �(q�Q); (7)with coupling constant f0. Eq. (4) is then replacedby [27] �(p; T ) = �0(p) + f0n(�(p+Q; T )): (8)This treatment is analogous to that adopted by Nozi�eres[24] in a study of non-FL behavior of strongly correlatedFermi systems for the case where forward scattering isdominant. Eq. (8) can be derived within a standardvariational procedure based on the formula [27]E = Z ��0pn(p) + 12f0n(p)n(p+Q)� 2d� (9)

for the energy E of the model quasiparticle system.Eq. (8) is conveniently rewritten as a system of two equa-tions �1 = �01 + f0n(�2);�2 = �02 + f0n(�1); (10)where �1 = �(p1) � � and �2 = �(p1 + Q) � �, while�01 = �0(p) and �02 = �0(p+Q).In the earlier work [27], a graphical procedure wasintroduced to solve the set (10) at T = 0. Three di�er-ent solutions were found. One of these corresponds toan exceptional, non-FL state [32] exhibiting a 
at single-particle spectrum. In the absence of pairing correlations,this solution turns out to be disfavored energetically rel-ative to the other two solutions, which possess identicalFL-like properties.Focusing on the properties of the latter two solutions,we observe that at T = 0 the associated rearrangementof the initial Landau state can occur only in those 2Dsystems in which hot spots [36] exist{points situated onthe Fermi line and connected by the vector Q. In fact,for systems with small quasiparticle �lling, the productn(p)n(p+Q) vanishes for any momentum p; hence theground-state energy is independent of the coupling con-stant f0. The same is true in the case of small quasihole�lling.In systems having hot spots, the rearrangement oc-curs due to breaking of quasiparticle pairs occupyingsingle-particle states with momenta p and p +Q. Thecorresponding domain R (the \reservoir") consists offour quasi-rectangles, each adjacent to one of the vanHove saddle points. Each of the four elements of R iscon�ned between the border of the Brillouin zone, thecounterpart of the initial Fermi line, de�ned by the equa-tion �0(p+Q) = �, and two segments of the Fermi lineembracing the given saddle point.In the rearrangement being considered, the quasi-particles move out the domain R to resettle in a regionL where all pairs of single-particle states connected bythe vector Q are empty. The region L comprises four\lenses," situated between neighboring hot spots andbounded by the initial Fermi line and its counterpart(see panel (a) of Fig.4). The transfer of one quasipar-ticle from R to L produces a gain in energy which isjust the coupling constant f0 minus the loss � of kineticenergy. The minimum loss �min occurs when a quasi-particle, vacating a state in R with momentum p, occu-pies in L a state of lowest energy, given by the chemicalpotential, so that �min = � � �0(p). Therefore the re-arrangement is favorable provided �0(p)��+f0 � 0. Inthe resettlement process, the chemical potential �, which�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 9 { 10 2010
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Fig.4. Panel (a): Fermi line (black) and its counter-part (dashed/blue) for the bare tight-binding spectrum ofEq. (5) with t1=t0 = 0:45. The \reservoirs" R (see text)are colored in black/green, and the lenses L, in light gray.The hot spots connected with each other by the vector Qare symbolized by open/red dots. Panel (b): Fermi linefor the simpli�ed Fermi-liquid-theory model based on thein�nite-range interaction function (7) with f0=0:4 (in unitsof 2t0). Hot lines are drawn as double line (red on-line).Fermi lines for the bare tight-binding spectrum �0(p) andfor the same spectrum shifted by �f0 as well as their coun-terparts are shown as dotted lines (the latter two lines aredrawn in blue on-line).coincides with the maximum quasiparticle energy in oc-cupied states (in particular, in the lens region), evidentlyincreases relative to its initial value �i. The quasiparti-cles that resettle to the lens region then possess almostthe same e�ective mass as the noninteracting electrons.This conclusion is con�rmed by the numerical calcula-tions represented in Fig.3.An alternative process involves transfer of the qua-siparticle counterpart, which has momentum p+Q. Inthis case, the rearrangement occurs provided �0(p+Q)�� �+ f � 0. The choice between the two options is de-cided by comparison of the corresponding energies. The

boundary at which one behavior gives way to the otheris de�ned by the relation �0(p) = �0(p +Q). Since thestraight line so de�ned is part of the new Fermi line, weinfer that the rearrangement has converted the original,isolated hot spot into a continuous line of hot spots (seepanel (b) of Fig.4).The results obtained imply that quasiparticles areswept from a certain subdomain S of R consisting ofeight approximately trapezoidal strips. The boundariesof a given strip are traced on three sides by (respec-tively) the initial Fermi line, the border of the Bril-louin zone, and a line geometrically similar to the initialFermi line but shifted into the domain R (see Fig.4).The strip's fourth side (double/red line) is just the hotline. The solution derived is self-consistent: any single-particle state with momentum p 2 S has its counterpart,with momentum p+Q, located outside S, and this stateis occupied, so that Eq. (8) is ful�lled. Transparently,in this non-critical scenario, the new momentum distri-bution does not violate C4 symmetry.In the situation where C4 symmetry is violated inthe rearrangement, the symmetry breaking occurs fora critical value fc of f0, at which two segments of theFermi line crossing the same boundary of the Brillouinzone merge at the saddle point. When this happens, thenumber of solutions of Eq. (1) certainly drops, signalinga topological phase transition which, as readily seen,entails the breakdown of C4 symmetry.Suppose on the contrary that C4 symmetry is pre-served at f0 > fc. Then all the saddle points must beemptied simultaneously, implying that every rearrangedsaddle point energy �s exceeds the chemical potential �.But according to Eq. (8), the interaction contribution to�s vanishes when all the saddle points are emptied. Con-sequently, at f0 > fc, the saddle-point energy �s mustcoincide with the corresponding bare value �0s, which islower than the initial chemical potential �i. Thus, acontradiction is encountered.We are driven to the conclusion that the critical sit-uation giving rise to violation of C4 symmetry is onein which the Fermi line, calculated within FL theory,attains a saddle point. Since both components of thequasiparticle group velocity v(ps) vanish at this criticalpoint, the corresponding density of states must acquirea singularity, which implies that we are dealing with aquantum critical point (QCP).The contradiction is resolved beyond the QCP if onlyone of two neighboring saddle points is emptied, with thesecond remaining occupied{thereby breakingC4 symme-try. As a point where the Fermi line crosses the px axismoves away from the a�ected saddle point, its counter-part, shifted by the vector Q, slides along the border of�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 9 { 10 2010



Spontaneous breaking of four-fold rotational symmetry : : : 583the Brillouin zone, determining the boundary of the new�lling. These conclusions drawn from analysis of thesimple in�nite-range model are in agreement the �nd-ings of the numerical calculations based on the moreelaborate model based on Eqs. (4){(6).To summarize: in addressing the problem of C4-symmetry violation, we have taken account of antifer-romagnetic 
uctuations within a self-consistent Fermiliquid approach, employing an interaction function thatis more realistic than the separable approximation as-sumed in mean-�eld treatments. We have demonstratedthat inclusion of the exchange interaction drives the cal-culated single-particle spectrum so as to shrink the dis-tance between saddle points and the Fermi line. Whenmerging occurs, the electron group velocity vanishes atthe points of mergence, because these points coincidewith the saddle points. A quantum critical point (QCP)of a new type is thereby revealed, at which a topologicalphase transition triggers the violation of C4 symmetry.Signi�cantly, the transition is found to be continuous, incontrast to the �rst-order phase transition obtained inmean-�eld theory, where the corresponding QCP doesnot exist. Beyond the transition point, the group ve-locity becomes �nite again. Thus, on one side of theQCP, the system behaves as conventional Landau Fermiliquid. On the other side, the electron liquid becomesan unconventional Fermi liquid because of the loss offour-fold symmetry.We thank A.Alexandrov, A.Balatsky, E.Fradkin,A.Mackenzie, V. Shaginyan, V.Yakovenko, andH.Yamase for fruitful discussions. This researchwas supported by the McDonnell Center for the SpaceSciences, by Grants # 2.1.1/4540 and #NS-7235-2010.2 from the Russian Ministry of Education andScience, and by Grant #09-02-01284 from the RussianFoundation for Basic Research.1. A. Kaminski, S. Rosenkranz, H.W. Fretwell et al., Na-ture 416, 610 (2002).2. Y. Ando, K. Segawa, S. Komiya, and A.N. Lavrov,Phys. Rev. Lett. 88, 137005 (2002).3. J. Xia, E. Schemm, G. Deutscher et al., Phys. Rev. Lett.100, 127002 (2008).4. V. Hinkov, D. Haug, B. Fauque et al., Science 319, 597(2008).5. H.A. Mook, Y. Sidis, B. Fauque et al., Phys. Rev. B 78,020506(R) (2008).6. K. Daou, J. Chang, D. LeBoeuf et al., arXiv:0909.4430.7. S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393,550 (1998).8. H. Yamase and H. Kohno, J. Phys. Soc. Jpn. 69, 2151(2000).
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