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The Fermi liquid approach is applied to the problem of spontaneous violation of the C4 symmetry in

strongly correlated two-dimensional electronic systems on a square lattice. The symmetry breaking is traced
to the existence of a topological phase transition. This continuous transition is triggered when the Fermi line,
driven by the quasiparticle interactions, reaches the van Hove saddle points, where the group velocity vanishes
and the density of states becomes singular. An unconventional Fermi liquid emerges beyond the implicated

quantum critical point.

The breaking of fundamental symmetries in ground
states of strongly correlated two-dimensional (2D) elec-
tron systems [1-6] remains one of the most intensely
debated topics in low-temperature condensed matter
physics. Kivelson, Fradkin, and Emery [7] were the first
to discuss the case of nematic phase transitions, well be-
fore relevant experimental data was obtained. Somewhat
later, Yamase and Kohno [8] (within ¢ — J model) and
Halboth and Metzner [9] (within the Hubbard model)
attributed the breaking of four-fold symmetry to viola-
tion of a Pomeranchuk stability condition [10] associated
with antiferromagnetic fluctuations.

Subsequently, much theoretical work has been aimed
at elucidating salient features of this phenomenon, pri-
marily within mean-field theory [11-17]. It is instruc-
tive to recognize that the approach taken in these ef-
forts bears a striking resemblance to that employed by
Belyaev fifty years ago to describe quadrupole defor-
mation in atomic nuclei [18]. To determine the criti-
cal point at which the spherical shape becomes unstable
and calculate the nuclear deformation beyond this point,
he introduced an effective Hamiltonian with separable
quadrupole-quadrupole Q; Q; interaction. Analogously,
for two-dimensional tetragonal electronic systems, a sep-
arable interaction d2(p1)d2(p2) with order parameter
d2(pz, py)=cospy—cospy is adopted in the mean-field
treatments of the breakdown of Cy symmetry, momenta
being measured in units of the inverse lattice constant.
However, such an effective Hamiltonian with separable
interaction is appropriate only in the channel where sym-
metry breaking occurs. Moreover, even in this channel
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a mean-field approach may be inadequate, as exhibited
for example in the prediction of a first-order phase tran-
sition in the case of violation of point-group symmetries
on a square lattice [19].

Burdened with variety of inconsistencies, the mean-
field description of nuclear deformation was superseded
many years ago by the more sophisticated Fermi-liquid
(FL) approach [20]. Following this successful precedent,
we work within the FL framework to obtain a better
understanding of C4-symmetry breaking in electron sys-
tems on a 2D square lattice. Intensive numerical cal-
culations assuming a finite-range exchange interaction,
supported by complementary analysis of a simplified
model, disclose unexpected features of the phenomenon.
In contrast to the description given by mean-field the-
ory, we find that the breakdown of C; symmetry is as-
sociated with a topological phase transition that occurs
under conditions that allow the Fermi line, calculated
within FL theory, to reach the van Hove saddle points
(0,7), (w,0), (0, —7), (—, 0).

Consideration of topological transitions dates back
to an article by I. M. Lifshitz [21], in which the form
of the single-particle spectrum e(p) was assumed to
be known. However, within FL theory ¢(p) is itself a
functional of the quasiparticle momentum distribution
n(p) = [1+exp ((e(p) — p)/T)]"". Accordingly, self-
consistent inclusion of the interactions between quasi-
particles may lead to unforeseen types of the topologi-
cal transitions [22-33]. We find just such a case in the
problem of C4-symmetry violation.

Stated simply, topological transitions in correlated
Fermi systems are signaled (at zero temperature) by a
change of the number of roots of equation
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e(p,nr) = 1, (1)

where np is the Fermi step distribution and p is the
chemical potential. For a thorough development of the
concept, see the review by Volovik [30]. Throughout, we
adhere to his rigorous quantitative definition of topolog-
ical phase transitions, as distinguished from looser no-
tions such as transitions between large and small Fermi
surfaces that are also prevalent in the literature.

Analysis of topological phase transitions in fermi-
onic systems is greatly facilitated by the absence of crit-
ical fluctuations of any order parameter at the transi-
tion point and its vicinity, meaning that the Landau-
Migdal quasiparticle picture retains its validity. Thus,
the physical many-fermion system may be viewed as a
system of interacting quasiparticles, and Cy-symmetry
violation can be investigated using the fundamental FL
relation [34, 35]

m _ Oeo(p)
op op

1 On(p1)
+ 570 [ Fapaa(p,p) 5P oy
(2)

In this relation, dv = dp,dp,/(2m)? is the volume ele-
ment of 2D momentum space, €y(p) is the bare single-
particle spectrum, and F is a phenomenological interac-
tion function depending only on the momenta p and p;
of the colliding quasiparticles.

Our goal is to analyze the impact of antiferromag-
netic fluctuations on electron spectra calculated using
Eq. (2). Taking account of these fluctuations in the inter-
action function F presents little difficulty in the regime
far from the antiferromagnetic phase transition, since the
fluctuation exchange can be treated within the Ornstein-
Zernike approximation. The part of F responsible for
the exchange is then given by

(3)

where the constant A represents the spin-fluctuation ver-
tex and Q = (m,w) the antiferromagnetic wave vector,
while ¢ denotes the correlation radius. Result (3) re-
lies on the fact that the interaction function F coincides
with a specific static limit of the quasiparticle scatter-
ing amplitude whose initial and final energies are on the
Fermi surface, such that this quantity is energy- and
frequency-independent [34, 35].

Inserting Eq. (3) into Eq. (2) and evaluating
the spin-fluctuation contribution aided by the identity
20,305 = 3005043 — 00503, ONe arrives at

féﬂy&(p’pl) = Azaa/ja‘yﬁ [(P_Pl—Q)2 + 6_2]

n(p1)
P—pP1— Q) +¢

€(p) = €o(p) + fa / : —dvy, (4)
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where f, = 3A2/2. The chemical potential y, being con-
stant along the Fermi line, is determined by the normal-
ization condition [ n(p) 2dv = p, where factor 2 assumes
summation over two spin projections.

Numerical solution of the 2D nonlinear integral equa-
tion (4) is extremely time-consuming since it is necessary
to compute to high precision to rule out spurious signals
of broken symmetry.

Calculations have been performed in the case of an
open Fermi surface, assuming a tight-binding spectrum

€0(p) = —2to (cosp, + cospy) + 4¢1 cospg cospy, (5)

with the input parameters tg, ¢; and the chemical poten-
tial o taken to ensure a rather small distance between
the tight-binding Fermi line and the saddle points. A
finite-range interaction function

f@=fu[(a-Q2+¢2] " (6)

is adopted, with £ = 30. Salient results are reported for
strategically chosen values f, = 1.0 and 1.5 of the cou-
pling parameter (in units of 2¢p), and at temperatures
T = 1072 and 10~* (also in units of 2¢y). It is worth not-
ing that the approach based on Eq.(4) is self-consistent
provided the dimensionaless parameter f, N(0) is rather
small, N(0) ~ 1/(2nto) being the density of states of
2D electron gas on square lattice with the tight-binding
spectrum (5).

The numerical calculations, as represented here in
Figs.1-3, reveal some remarkable features of the qua-
siparticle rearrangement responsible for violation of Cy
symmetry. One conspicuous feature, well documented
in the figures, is that only those quasiparticles residing
in domains close to the saddle points are noticeably af-
fected by the inclusion of antiferromagnetic fluctuations
in the FL treatment.

To understand of the onset of symmetry breaking, it
is most instructive to track the distance between neigh-
boring points where the Fermi line crosses the border of
the Brillouin zone. This distance is found to shrink as
the coupling constant f, is increased toward a critical
value lying between 1.0 and 1.5. Breakdown of Cj; sym-
metry presumably occurs for a critical coupling f,. at
which the two crossing points merge with one another
as they embrace and converge upon the nearby saddle
point. As seen in Fig.1, the Fermi line (thick solid /
red on-line) calculated at temperature T = 10~ (ef-
fectively zero) for a coupling constant f, = 1.5 lying
beyond the critical point does indeed violate x — y sym-
metry; the corresponding Fermi line for f, = 1.0 (long-
dashed/green) does not. Another feature worthy of note
is the effect of temperature in suppressing the symmetry
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Fig.1. Fermi lines computed for the Fermi-liquid-theory
model assuming bare tight-binding spectrum (5) with
t1/to = 0.45 and finite range interaction (6) with ¢ = 30.
Panel (a): Results for f, = 1.5 and T = 10~* (both in
units of 2¢p). Thick solid line (red on-line): one of two
identical solutions with spontaneously broken C4 symme-
try. Only the first quadrant of the Brillouin zone is drawn,
since neither p, -+ —p, nor p, — —p, reflection symme-
try is broken. Thin solid lines: Fermi lines for the bare
tight-binding spectrum €3 and its counterpart. Panels (b)
and (c): two shaded squares adjacent to the saddle points
(0,7) and (m,0) present in panel (a) are magnified. The
Fermi-line solution with broken C4y symmetry appearing in
panel (a) (thick solid/red line) is drawn together with two
x — y-symmetrical solutions corresponding respectively to
2 = 1.0 and T = 10~* (long-dashed/green line), and to
fo =1.5 and T = 10~ 2 (short-dashed/blue line)

breaking phenomenon. Comparison of the deviations of
the Fermi line calculated at f, = 1.5 and T = 10~ from
the symmetry-preserving Fermi line obtained at f, = 1.5
and T = 10~2 (short-dashed/blue) demonstrates that Cy
symmetry can be restored by elevating the temperature.

Results from calculations of the magnitude v(p) =
= |0e(p)/0p| of the group velocity along the Fermi line
are plotted in Fig.2. These results demonstrate that the
impact of antiferromagnetic correlations, as described by
Eq. (3), is only significant for quasiparticles in momen-
tum domains adjacent to the saddle points. The small
gap between the values for v given by the bare tight-
binding model and by the Fermi-liquid-theory treatment,
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Fig.2. Group-velocity magnitudes v = |fe(p)/0p| (in units
of 2tp), evaluated along the Fermi line as a function of the
angle ¢ defined in the inset, for different single-particle
spectra ¢(p). Results are shown for the bare tight-binding
model with the same parameter choice as in Fig.1 (dash-
dotted/brown line) and for the Fermi-liquid-theory model
of Fig.l at fo = 1.0, T = 10™* (dotted/green line);
fo = 1.5, T = 107* (solid/red line); and f, = 1.5,
T = 1072 (dashed/blue line). Broken Ci-symmetry of
the solid/red curve with respect to z — y exchange is man-
ifested by its different behavior in the two shaded areas
close to the saddle points

seen in domains away from the saddle points, is due
primarily to a shifting of the location of the Fermi line
triggered by the antiferromagnetic correlations. On the
other hand, the group velocity v evaluated at f, = 1.5
and T = 10~ * (solid/red line) is seen to acquire an z —y-
anisotropic component close to the saddle points.

Fig.3 presents results from calculations of electron
spectra at T = 10~* in the direction perpendicular to
the Fermi line. Far from the saddle points, the impact
of antiferromagnetic fluctuations is again found to be mi-
nor, but in their vicinity the effects are very strong. In
particular, the particle and hole spectra cease to be alike;
the average slope of the hole spectrum noticeably exceeds
that of the particle spectrum. One might attribute this
difference to the variation of Fermi-line contributions to
Eq. (2) associated with a turning point emerging in the
trajectory of the Fermi line at the critical point. From
all the results discussed above, we infer that the descrip-
tion of the rearrangement of the ground state in terms
of a single dy parameter is a poor approximation.

To further analyze and interpret the results obtained
numerically for the finite-range interaction (6) and bare
tight-binding spectrum (5), we simplify the interaction
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Fig.3. Single-particle spectra e(p) (in units of 2ty) eval-
uated along two lines in the momentum plane (as indi-
cated with corresponding type/color coding in the insets).
The Fermi-liquid theory model used for Fig.1 is applied
at T=10"* with f,=1.0 (upper panel) and f,=1.5 (lower
panel). Spectral curves are plotted versus the normal com-
ponent p, of the momentum, measured with respect to
the Fermi line. In the insets, the dashed/blue line coin-
cides with the diagonal of the zone, while the solid/red
line crosses the relevant hot line

function in the manner of Ref. [27], replacing the ex-
change term (3) by an infinite-range form

f(a) = (2m)*fo 6(a — Q), (7)

with coupling constant f;. Eq. (4) is then replaced

by [27]

€(p,T) = eo(p) + fon(e(p + Q,T)). (8)

This treatment is analogous to that adopted by Nozieres
[24] in a study of non-FL behavior of strongly correlated
Fermi systems for the case where forward scattering is
dominant. Eq. (8) can be derived within a standard
variational procedure based on the formula [27]

B [ |40 + jhontoinio + @) 200 (0)
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for the energy E of the model quasiparticle system.
Eq. (8) is conveniently rewritten as a system of two equa-
tions

€1 = €] + fon(ez),

&2 = €5 + fon(er), (10)

where €1 = €(p1) — p and €2 = €(p1 + Q) — p, while
e} = eo(p) and € = eo(p + Q).

In the earlier work [27], a graphical procedure was
introduced to solve the set (10) at 7' = 0. Three differ-
ent solutions were found. One of these corresponds to
an exceptional, non-FL state [32] exhibiting a flat single-
particle spectrum. In the absence of pairing correlations,
this solution turns out to be disfavored energetically rel-
ative to the other two solutions, which possess identical
FL-like properties.

Focusing on the properties of the latter two solutions,
we observe that at T = 0 the associated rearrangement
of the initial Landau state can occur only in those 2D
systems in which hot spots [36] exist—points situated on
the Fermi line and connected by the vector Q. In fact,
for systems with small quasiparticle filling, the product
n(p)n(p + Q) vanishes for any momentum p; hence the
ground-state energy is independent of the coupling con-
stant fo. The same is true in the case of small quasihole
filling.

In systems having hot spots, the rearrangement oc-
curs due to breaking of quasiparticle pairs occupying
single-particle states with momenta p and p + Q. The
corresponding domain R (the “reservoir”) consists of
four quasi-rectangles, each adjacent to one of the van
Hove saddle points. Each of the four elements of R is
confined between the border of the Brillouin zone, the
counterpart of the initial Fermi line, defined by the equa-
tion eo(p + Q) = u, and two segments of the Fermi line
embracing the given saddle point.

In the rearrangement being considered, the quasi-
particles move out the domain R to resettle in a region
L where all pairs of single-particle states connected by
the vector Q are empty. The region £ comprises four
“lenses,” situated between neighboring hot spots and
bounded by the initial Fermi line and its counterpart
(see panel (a) of Fig.4). The transfer of one quasipar-
ticle from R to £ produces a gain in energy which is
just the coupling constant fy minus the loss 7 of kinetic
energy. The minimum loss 7, occurs when a quasi-
particle, vacating a state in R with momentum p, occu-
pies in L a state of lowest energy, given by the chemical
potential, so that 7iin = ¢ — €o(p). Therefore the re-
arrangement is favorable provided €y(p) —p+ fo > 0. In
the resettlement process, the chemical potential u, which
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Fig.4. Panel (a): Fermi line (black) and its counter-
part (dashed/blue) for the bare tight-binding spectrum of
Eq. (5) with ¢1/to = 0.45. The “reservoirs” R (see text)
are colored in black/green, and the lenses £, in light gray.
The hot spots connected with each other by the vector Q
are symbolized by open/red dots. Panel (b):
for the simplified Fermi-liquid-theory model based on the
infinite-range interaction function (7) with fo=0.4 (in units
of 2tp). Hot lines are drawn as double line (red on-line).
Fermi lines for the bare tight-binding spectrum €o(p) and
for the same spectrum shifted by — fo as well as their coun-
terparts are shown as dotted lines (the latter two lines are
drawn in blue on-line).

Fermi line

coincides with the maximum quasiparticle energy in oc-
cupied states (in particular, in the lens region), evidently
increases relative to its initial value p;. The quasiparti-
cles that resettle to the lens region then possess almost
the same effective mass as the noninteracting electrons.
This conclusion is confirmed by the numerical calcula-
tions represented in Fig.3.

An alternative process involves transfer of the qua-
siparticle counterpart, which has momentum p + Q. In
this case, the rearrangement occurs provided €y (p+Q) —
— w+ f > 0. The choice between the two options is de-
cided by comparison of the corresponding energies. The

boundary at which one behavior gives way to the other
is defined by the relation €(p) = €o(p + Q). Since the
straight line so defined is part of the new Fermi line, we
infer that the rearrangement has converted the original,
isolated hot spot into a continuous line of hot spots (see
panel (b) of Fig.4).

The results obtained imply that quasiparticles are
swept from a certain subdomain & of R consisting of
eight approximately trapezoidal strips. The boundaries
of a given strip are traced on three sides by (respec-
tively) the initial Fermi line, the border of the Bril-
louin zone, and a line geometrically similar to the initial
Fermi line but shifted into the domain R (see Fig.4).
The strip’s fourth side (double/red line) is just the hot
line. The solution derived is self-consistent: any single-
particle state with momentum p € S has its counterpart,
with momentum p + Q, located outside S, and this state
is occupied, so that Eq. (8) is fulfilled. Transparently,
in this non-critical scenario, the new momentum distri-
bution does not violate Cy symmetry.

In the situation where C4 symmetry is violated in
the rearrangement, the symmetry breaking occurs for
a critical value f. of fy, at which two segments of the
Fermi line crossing the same boundary of the Brillouin
zone merge at the saddle point. When this happens, the
number of solutions of Eq. (1) certainly drops, signaling
a topological phase transition which, as readily seen,
entails the breakdown of Cy symmetry.

Suppose on the contrary that C4 symmetry is pre-
served at fo > f.. Then all the saddle points must be
emptied simultaneously, implying that every rearranged
saddle point energy €, exceeds the chemical potential p.
But according to Eq. (8), the interaction contribution to
€s vanishes when all the saddle points are emptied. Con-
sequently, at fo > f., the saddle-point energy e, must
coincide with the corresponding bare value €2, which is
Iower than the initial chemical potential u;. Thus, a
contradiction is encountered.

We are driven to the conclusion that the critical sit-
uation giving rise to violation of C4y symmetry is one
in which the Fermi line, calculated within FL theory,
attains a saddle point. Since both components of the
quasiparticle group velocity v(ps) vanish at this critical
point, the corresponding density of states must acquire
a singularity, which implies that we are dealing with a
quantum critical point (QCP).

The contradiction is resolved beyond the QCP if only
one of two neighboring saddle points is emptied, with the
second remaining occupied—thereby breaking C4 symme-
try. As a point where the Fermi line crosses the p, axis
moves away from the affected saddle point, its counter-
part, shifted by the vector Q, slides along the border of
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the Brillouin zone, determining the boundary of the new
filling. These conclusions drawn from analysis of the
simple infinite-range model are in agreement the find-
ings of the numerical calculations based on the more
elaborate model based on Egs. (4)—(6).

To summarize: in addressing the problem of Cj-
symmetry violation, we have taken account of antifer-
romagnetic fluctuations within a self-consistent Fermi
liquid approach, employing an interaction function that
is more realistic than the separable approximation as-
sumed in mean-field treatments. We have demonstrated
that inclusion of the exchange interaction drives the cal-
culated single-particle spectrum so as to shrink the dis-
tance between saddle points and the Fermi line. When
merging occurs, the electron group velocity vanishes at
the points of mergence, because these points coincide
with the saddle points. A quantum critical point (QCP)
of a new type is thereby revealed, at which a topological
phase transition triggers the violation of C4y symmetry.
Significantly, the transition is found to be continuous, in
contrast to the first-order phase transition obtained in
mean-field theory, where the corresponding QCP does
not exist. Beyond the transition point, the group ve-
locity becomes finite again. Thus, on one side of the
QCP, the system behaves as conventional Landau Fermi
liquid. On the other side, the electron liquid becomes
an unconventional Fermi liquid because of the loss of
four-fold symmetry.
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