
Pis'ma v ZhETF, vol. 91, iss. 11, pp. 639 { 645 c 2010 June 10Critical disorder e�ects in Josephson-coupled quasi-one-dimensionalsuperconductorsE.Nakhmedov+�, R.Oppermann+r+Institut f�ur Theoretische Physik, Universit�at W�urzburg, D-97074 W�urzburg, Germany�Institute of Physics, Azerbaijan National Academy of Sciences,H. Cavid str. 33, AZ1143 Baku, AzerbaijanrInstitut de Physique Th�eorique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette, FranceSubmitted 2 Dezember 2009Resubmitted 5 March 2010E�ects of non-magnetic randomness on the critical temperature Tc and diamagnetism are studied in a classof quasi-one dimensional superconductors. The energy of Josephson-coupling between wires is considered tobe random, which is typical for dirty organic superconductors. We show that this randomness destroys phasecoherence between the wires and Tc vanishes discontinuously when the randomness reaches a critical value.The parallel and transverse components of the penetration depth are found to diverge at di�erent criticaltemperatures T (1)c and Tc, which correspond to pair-breaking and phase-coherence breaking. The interplaybetween disorder and quantum phase uctuations results in quantum critical behavior at T = 0, manifestingitself as a superconducting-normal metal phase transition of �rst-order at a critical disorder strength.Quasi-one-dimensional (quasi-1D) organic conduc-tors, including the charge-transfer (Bechgaard) salts of(TMTSF)2X (where TMTSF stands for tetramethylte-traselenofulvalinium and X = PF6, ClO4, NO3 beinga strong electron acceptor or anion) [1] and A-15 com-pounds [2], attract enhanced interest since the discoveryof superconductivity in (TMTSF)2PF6. Low tempera-ture properties of the organic superconductors are verysensitive to disorder. Alloying anions, X-ray irradiationand cooling rate controlled anion reorientation introducenon-magnetic randomness into the system while leavingthe backbone structure and the unit cell of the organicsuperconductors to a large extent unchanged. There is acommon agreement that disorder, introduced by meansof these experimental methods, must be characterized asnon-magnetic, and yet it was shown [3 { 5] to suppressthe superconducting (SC) phase.E�ect of disorder on the SC phase has a long-standing history. According to the Anderson's theorem[6], the SC critical temperature Tc for s-wave pairing isinsensitive to the scattering rate on non-magnetic impu-rities. Magnetic impurities break time-reversal symme-try of the s-pairing, suppress at the same time the SCphase [7]. Strong disorder of non-magnetic impuritiesmay however destroy d-wave pairing [8]. Interplay be-tween superconductivity and Anderson localization in astrongly disordered superconductor was shown [8 { 17]to result in spatial inhomogeneity of the order parame-ter. High purity of the organic superconductor backboneeven in the dirty limit seems to exclude a spatial in-homogeneity of the order parameter modulus along SC

wires, o�ering an opportunity for another mechanismof disorder-driven superconductor-normal metal phasetransition. E�ects of order parameter phase uctua-tions on Tc have also been studied in low-dimensionalsuperconductors [18 { 21]. It is well known that thereis no SC phase transition in 1D and two-dimensional(2D) systems [22], since strong uctuations of the orderparameter phase destroy o�-diagonal long-range order(ODLRO) in a single SC wire or �lm. Strong phase uc-tuations in clean quasi-1D superconductors have beenshown [18, 19] to suppress Tc below a mean-�eld transi-tion temperature. Classifying the superconductors withsmall sti�ness as bad metals, Emery and Kivelson haveevaluated [20] a critical temperature of phase orderingby formally dividing a clean bulk superconductor intosmall regions with well de�ned phase, and have shownstrong suppression of SC phase by phase uctuations.Nevertheless, e�ects of disorder on phase uctuationsare neglected in all of these papers.In contrast to these previous activities we study inthis Letter a suppression of superconductivity as a resultof the destruction of the order parameter phase coher-ence by disorder. We consider weakly linked quasi-one-dimensional superconductors with random Josephson-couplings between pure one-dimensional (1D) SC wires.Singlet pairing is considered to occur inside the wires.Therefore, we assume that non-magnetic randomnessdoes not a�ect the order parameter amplitude. Wedemonstrate in this Letter that (i) non-magnetic ran-domness in the Josephson-coupling destroys correlationof the phases between di�erent chains in quasi-1D super-�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 11 { 12 2010 639



640 E.Nakhmedov, R.Oppermannconductors even in the classical phase uctuation regime,(ii) randomness yields quantum critical behavior. A SC-normal metal phase transition occurs at T = 0 withincreasing the strength of disorder, and that (iii) a sup-pression of the SC phase occurs discontinuously in bothclassical and quantum phase uctuations as a �rst-orderphase transition when the disorder-strength reaches acritical value. We derive that parallel and perpendic-ular components of the penetration depth, �k and �?diverge at di�erent critical temperatures T (1)c and Tc,which correspond to pair-breaking in the wires and tophase coherence breaking between the SC wires, respec-tively.Classical uctuations of the phase. The free energyfunctional of a quasi-1D superconductor weakly linkedwith Josephson coupling energy Ej;j+g between nearest-neighbor chains can be written in the presence of themagnetic �eld B asFst=N (1)s (T )�kXj Z dz� ~28mk�2k�@'j@z �2e�k~c Az�2+Xg=�1Ej;j+g[1� cos �'j�'j+g+2e�k~c Z j+gj A?dr?�]++ �ka2? (B(r) �Bext)28� �; (1)where 'j(z) denotes the order parameter phase, A == fA?; Azg is the vector-potential, and N (1)s (T ) == N (1)s (0)�(T ) is the linear density of SC electronswith �(T ) = (T (1)c � T )=T (1)c and N (1)s (0) � N (1)N 'pF =~ at T � T (1)c . Dimensionless coordinates r =fj; zg are introduced on the scale of longitudinal �k =~2N (1)s (0)=4mkT (1)c and transverse �? � a? componentsof the coherence length. We assume the Josephson en-ergy Ej;j+g to be a random parameter with Gaussiandistribution given byPfEj;j+gg = 1p2�W 2 exp�� (Ej;j+g �Eg)22W 2 	: (2)Employing the replica trick one can integrate out theGaussian disorder to obtain the average value of the freeenergy F = �T hlnZi asF = �T Z Yj;g N (1)s �kp2� d�j;ge�N(1)2s �2k2 �2j;g �� lnZ YD'je�F=T ; (3)with

F = N (1)s �kXj Z dz� ~28mk�2k �@'j@z �2 ++Xg (Eg �N (1)s �kW�j;g)[1� cos('j � 'j+g)]�; (4)where �j;g is a Hubbard-Stratonovich auxiliary �eld.The average value of a given functional C(f'jg), e.g.cos'j or cos('j � 'j+g), can be obtained according tothe relationhhC(f'jg)ii = �T ���j hlnZij�j=0by adding the source termPj R dz�jC(f'jg) to the freeenergy functional, which yields for the correlatorhhC(f'jg)ii = Z Yj;g N (1)s �kp2� d�j;ge�N(1)2s �2k2 �2j;g �� R D'C(f'jg)e�F=TR D'e�F=T ; (5)where the double bracket hh: : : ii means averaging overthermodynamic uctuations and over randomness. Inorder to estimate an asymptotic behavior of the cor-relator, e.g. hhcos('j � 'j+g)ii we write the inte-grand of Eq.(5) as expf�N (1)2s �2kf(�j;g)g, and applythe stationary-phase approximation to determine an ex-tremal value of the auxiliary �eld ��j;g minimizing thefunction f(�j;g). The saddle point value of �j;g is ob-tained to be��j;g = WT Z dz�hcos('j(z)� 'j+g(z))i��hcos('j(z)� 'j+g(z)) cos('j(0)� 'j+g(0))ihcos('j(0)� 'j+g(0))i �:The constant N (1)s �k on the exponent can be estimatedto be equal to N (1)s �k ' �F =T (1)c � 103 for the or-ganic superconductors with �F being the Fermi energy,which ensures a sharply peaked saddle point of the inte-grand. The thermodynamic averages in the expressionof ��j;g are taken with the free energy functional, givenby Eq.(4) at the saddle point �j;g = ��j;g. So, a contri-bution of the non-magnetic randomness to the e�ectivefree-energy functional is proportional to the variance ofthe phase correlator, which gives an idea on the form ofthe disorder-dependent term in the e�ective functional.The critical temperature for the quasi-1D super-conductors can now be found from Eq.(5),written forcos'j by using the self-consistent mean-�eld method�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 11 { 12 2010



Critical disorder e�ects in Josephson-coupled : : : 641[18], which consists in replacing the phase correlationsof the cosine term byPg Eg[1� cos('j(z)� 'j+g(z))]!! E?[1� hhcos(')iieff cos('(z))];where E? = PgEg. For a clean system hhcos(')iieffwas chosen [18] to be equal to hcos(')i. For the disor-dered superconductor we choosehhcos'iieff = hhcos'ii�N (1)s �k hhcos'i2i � hhcos'ii2hhcos'ii :Such a form of hhcos'iieff is similar to the expres-sion of the saddle point value for the averaged or-der parameter. Taking advantage of the smallness of(E?�N (1)s �kW�)hhcos(')iieff near Tc, we expand boththe numerator and the denominator of the integrand ofEq.(5), written for hhcos(')iieff , in this parameter. Thethermodynamic averages become pure one-dimensionalafter this expansion, which can be taken easily, yield-ing a power series of � for the integrand. Therefore,the integration over � is immediately performed. Sinceall higher order in hhcos(')iieff terms of the expansionvanish at T = Tc, we get the equation for Tc1 = E?N (1)s �kTc �1� W 2�kN (1)s �2TcE? ��� Z hcos('(0)) cos('(z))idz; (6)where � is the coordination number. The phase correla-tor in Eq.(6) is calculated in the clean limit of the 1Dfree energy functional, obtained from Eq.(1) by settingEj;j+g = 0, which returns (see Ref.[22])hcos('(0)) cos('(z))i = expf�jzj=rcg; (7)where rc = ~2N (1)s (T )=2mk�kT . Using dimensionlessTc-shift t = p��FE? � 1Tc � 1T (1)c � and disorder parame-ter q = W 2E?s2mk�2k�~2E? = W 22E?T (1)c r��FE? ;Eqs.(6), (7) yield 1 = t2(1� qt): (8)Expanding the physical solution of this cubic equationin the weak disorder regime (small q) the Tc-shift obeys1Tc = 1T (1)c + 1p��FE? + 1T (1)c � W2E?�2; (9)

showing that Tc decreases with increasing randomnesslikeW 2. For a pure system Eq.(9) gives the dependenceTc � E1=2? , in agreement with Efetov and Larkin in Ref.[18]. This expression shows that even a small interchain-coupling sets up an ODLRO in the system, and con-sequently, the critical temperature increases with E?.On the other hand, disorder reduces Tc due to \melt-ing" of the order parameter phase coherence betweenneighboring chains. The exact solution of Eq.(8) givesthree roots, among which the physical one is con�nedto the �nite q-range as shown in Fig.1 by the bold line.
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Fig.1. The physical solution t(q), giving the Tc(W )-dependence, within the full range from clean limit (CL:q = 0) to the dirty limit (DL: qc = 2=3p3)) is high-lighted as the bold (blue) curve. Formal solutions of thecubic Eq.(8) are shown for completeness. Tc(q) vanishesabruptly at q = qcAccording to this solution, the critical temperature de-creases monotonically with increasing q in the intervalof 0 � q � qc = 2=3p3. The SC phase hence suppressedbeyond the critical disorder-valueW 2c = 4E?T (1)c3 s E?3��F ;being transformed into a normal metallic phase forW 2 > W 2c . The critical temperature drops to zero atW 2 =W 2c with a jump of size�Tc = T �c = �r 3��FE? + 1T (1)c ��1 :Thus the SC-normal metal phase transition appears asa 1st-order transition.In order to �nd the behavior of t near the disor-der limit (DL in Fig.1) ft�; q�g = fp3; 2=3p3g, we ex-pand �t = t� � t in terms of �q = q� � q, which gives3 �¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 11 { 12 2010



642 E.Nakhmedov, R.Oppermann�t = 33=4p�q. In other words, �Tc = Tc � T �c behavesas �Tc = 33=4TcT �cE?(4��FE?(T (1)c )2)1=4 (W 2c �W 2)1=2in the vicinity of the breakdown pointfT �c ;W 2c g=��r 3��FE? + 1T (1)c ��1 ; 4E?T (1)c3 s E?3��F�:Quantum phase uctuations regime. We shall im-prove the calculation of the phase-correlators by takinginto account the transverse rigidity of the system, whichprovides a more realistic determination of the transi-tion temperature in the quantum uctuation regime. Westart from the Lagrangian, for simplicity at B = 0L = K�k(0)8 Xj Z dz[~ _'j(z)]2 � Fefff'g; (10)where _' denotes the time derivative of the phase. Thedynamical term in L can be interpreted as the electro-static energy of charged wires [19, 21]Eel = 12Xi;j Z dz Z dz0Ci;j(z � z0)Vi(z)Vj(z0)produced according to the �rst Josephson equation _' =(2e=~)V ; Ci;j(z � z0) are the speci�c coe�cients of elec-trostatic induction. Rewriting Eel in terms of time-derivative of phases, the Fourier transform K(q?; qz)of the new coe�cientsKi;j(z � z0) = 14e2Ci;j(z � z0);has the physicalmeaning of a compressibility. In Eq.(10)we neglect a spatial dispersion of the compressibility andtake K(q?; qz) = K = const. Fefff'g is the functionalF in Eq.(4), written at the saddle point ~�j;g of the aver-aged free energy F . The saddle point of F is found tobe ~�j;g = WFeff Z dzhh[1� cos('j(z)� 'j+g(z))]ii;where Feff = �T lnZ Yj;g D'je�Feff=T :So, Feff has to be calculated self-consistently. Note thatthe model would be calculated more rigorously by re-placing the 1D wire with discrete analogue of Josephson-coupled cells, and considering a strongly anisotropic 3DJosephson network. After averaging over disorder, one

can introduce the 'order parameters' as �a = hhei'aj ii andq�a;b = hhei'aj ihe�i'bj0 ii, where �a and qa;b are the orderparameters corresponding to the SC and glassy phaseswith a; b being the replica indices. The model can bemapped to the solvable Sherrington-Kirkpatrick modelfor the long-ranged phase-phase correlations, neverthe-less a solution of the model for the short-ranged (nearest-neighbor) phase-phase correlation case, realized in ourmodel, is hard task.The Hamiltonian, expressed in terms of the phases'j and canonical conjugate momenta �j asH =Xj ~ Z �j _'jdz �L;becomesH =Xj Z dz�2 �2j (z)K�k(0) + ~2N (1)s (T )8mk�k ��@'j@z �2 ++Xg �2cl[1� cos('j(z)� 'j+g(z))]��; (11)where �j = 1~ �L� _'j = 14~K�k(0) _'j;and �cl as given by�2cl = �20�1� W 2N (1)s �kE?Feff hh[1� cos('j(z)� 'j+g(z))]ii�(12)represents either the dimensionless anisotropy-parameter or the transverse rigidity of the randomsystem, while �0 in Eq.(12) being the transverse rigidityof the pure system�0 =  E?~2=8mk�2k!1=2 = (�FE?)1=2T (1)c : (13)�0 is a natural small parameter of the quasi-1D super-conductors, which ensures small interchain-coupling en-ergies in comparison with the intrachain Cooper-pairenergy. Indeed, expressing E? through the interchaintunneling integral J? [18] asE? ' J2?=�F yields �0 = J?=T (1)c :The quantum description is realized by expressing'q and �q as a linear superposition of Bose operatorsbq as 'q = � ���!!(q)�1=2(bq + by�q)�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 11 { 12 2010



Critical disorder e�ects in Josephson-coupled : : : 643and �q = i� !(q)4���! �1=2(b�q � byq):In the framework of the self-consistent harmonic approx-imation (SCHA), we rewrite the expansion of the cosineoperator in Eq.(11) in terms of the bosonic particle num-ber operator N̂q = byqbq [19, 21] asĤ =Xq ~!(q; T ) �byqbq + 1=2� ; (14)where the eigenfrequency of oscillation !(q; T ) is given!(q; T )=�![q2z + �2cle�S(0)� (g;T )2(2� cos qx � cos qy)]1=2:(15)We express the amplitude of the frequency �! == (N (1)s (T )=mkK�2k)1=2 as �! = 2��T (1)c �1=2=~, where� = 2�mk=K~2N (1)s �1=2=�: (16)The parameter �, which is an essential parameter of thetheory, can assume values between zero and one [18].The factor expf�S�(g; T )g in Eq.(15) is obtained asS�(g; T ) = 2���!N Xq 1� cos(q?g)!(q; T ) �Nq + 12� ; (17)where N is the number of unit cells per volume,and Nq = fexp (~!(q; T )=T ) � 1g�1 is Planck's dis-tribution function for phonons. A physical mean-ing of expf�S�(g; T )g is an average of cos('j(z) �'j+g(z)) over all one-phonon states, expf�S�(g; T )g =hhcos('j(z) � 'j+g(z))ii(T ), [19]. Application of theSCHA results in a renormalization of the parameter �cl,changing thus the oscillation frequency !(q; T ) by meansof the phase-phase correlator�2cl ! �2qu(T ) = �2cl expf�S�(g; T )g: (18)Note that the SCHA is valid under the conditionXq jAqj2hNqi = 2���!N Xq 1� cos(q?g)!(q; T ) hNqi < 1;which means that few phonons are excited in the system.It is easier to see that Feff can be calculated asFeff = �T lnTrfeĤ=T g by neglecting the dynamicalterm (K = 0 or � = 0) in Eq.(11), which givesFeff = T .Let us start with the T = 0 limit: expressing thephase-phase correlator e�S�(g;0) in terms ofS�(g; 0) = ���!N Xq 1� cos(q?g)!(q; 0)

gives e�S�(g;0) = (�qu(0))� � ��qu;which implies that even small interchain-coupling sta-bilizes ODLRO, hence also a �nite T phase transitionshould exist. In order to get an explicit expression forthe dependence of �qu on �0 and on disorder, we haveto solve the equation �2qu = �2cle�S�(g;0) together withEq.(12) for �cl, the latter of which also depends on �qu.Thus the equation for the reduced transverse rigidity��qu = �qu=�(0)qu , where �(0)qu = � 22��0 is the renormalizedtransverse rigidity for the clean system at T = 0, as-sumes the form(��qu)3�2� = (��qu)1�� � qqu; (19)where the quantum parameter of randomness qqu readsqqu = CW 22E2? � 22��0 : (20)The numerical solution of Eq.(19) is depicted in Fig.2.The reduced T = 0 transverse rigidity ��qu(qqu)jT=0 is
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644 E.Nakhmedov, R.OppermannHere, the transverse rigidity �qu(W )jT=0;�=1 decreaseslinearly with increasing W 2 and vanishes at W 2c == 2E? �T (1)c �2=C�F . The quantum critical behaviorin the model is however controlled by two parameters,the strength of randomness qqu(W ) and the parameterof quantum dynamics �. For � < 1, the superconductor-normal metal phase transition at T = 0 is always dis-continuous, and only turns into second-order at � = 1.Let us now study the �nite T behavior of the trans-verse rigidity. The phase transition in a quasi-1D su-perconductor occurs at some temperature T = Tc whenthe transverse rigidity in the ensemble of phases f'j(z)gvanishes. The energy spectrum !(q?; qz) of the collec-tive excitations is reorganized and the transverse q?-dependent part of !(q?; qz) vanishes at T = Tc, i.e.symmetry breaking occurs in the bosonic excitation atT = Tc. Inserting the solution of Eq.(17) for T < �T (1)cinto �2qu(T ) = �2cle�S�(g;T ) and using Eq.(18), we obtain�2qu(T ) = �2qu(0)� T�Tc0�� exp�� C TTc0 �qu(0)�qu(T )�;(22)where a new temperature scale is introduced by meansof Tc0 = �qu(0)T (1)c , and C is a constant C � 1. Interms ofy = ��Tc0T ��=2 �qu(T )�qu(0) and � = � TTc0�1��2 C2 ��=2;Eq.(22) assumes the form y = expf��=yg, which has anon-zero solution only for � � e�1. The �nite solution ofthis equation vanishes discontinuously at � = �c = e�1,giving the following value for TcTc = Tc0�� �2�� (2=eC) 22�� : (23)The magnitude of the jump in y(�c) is e�1, and hencethe phase transition is of �rst-order.Meissner e�ect. The current density is calculatedaccording to 1cJ(z; j) = �T ��A hlnZ(A)i:For simplicity we present here only the diamagnetic con-tribution to the i-th (i = k;?) component of the currentJdiai (z; j) = � c4��2i Ai(z; j); (24)where the longitudinal- �k and the transverse �? com-ponents of the penetration depth are obtained as

��2k = 4�e2N (1)sc2mka2? ; �2k�2? = 2mka2?E?~2 hhcos('j � 'j+g)ii:(25)Although �k(T ) diverges at T = T (1)c due to pair break-ing in the SC wires, �?(T ) diverges at the global SCtransition temperature T = Tc, where the phase coher-ence between neighboring wires is destroyed. Random-ness in the Josephson coupling shifts Tc to lower tem-peratures and, therefore, the magnetic �eld parallel tothe SC wires penetrates easier into the organic super-conductor. On the other hand, the randomness does notbreak the Cooper pairs, keeping the penetration of a per-pendicular magnetic �eld into the SC wires unchanged.In this Letter we studied disorder-e�ects onTc and on the diamagnetism of Josephson-coupledquasi-1D superconductors. Interplay of disorder withquantum phase uctuations plays a central role forsuperconductor-normal metal phase transitions inquasi-1D superconductors. The quantum criticality iscontrolled by two quantities, namely disorder strengthand dynamical parameter of phase uctuations. Thepresent model's quantum criticality signals the existenceof a quantum critical phase between SC- and normalphase. Its nature, whether it is a \mixing" of a glassyand CDW or SDW phases, needs further investigation.We thank the DFG for support under grant#Op28/7-1.1. C. Bourbonnais and D. J�erome, arXiv:0904.0617v1[cond-mat.str.el] 3 Apr. 2009.2. M. Weger and I. Goldberg, Solid State Phys. 28, 2(1973).3. M.-Y. Choi et al., Phys. Rev. B 25, 6208 (1982).4. T. Ishiguro, K. Yamaji, and G. Saito, Organic Super-conductors, Springer-Verlag, Heidelberg, 1998.5. N. Joo, P. A.-Senzier, C. Pasquier et al., J. Euro. Phys.B 40, 43 (2004).6. P.W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).7. A.A. Abrikosov and L. P. Gor'kov, Zh.Eksp.Teor.Fiz.35, 1558 (1958) [Sov. Phys. JETP 8, 1090 (1959)].8. M. Ma and P.A. Lee, Phys. Rev. B 32, 5658 (1985).9. A. Ghosal et al., Phys. Rev. B 65, 014501 (2001).10. R. Oppermann, Physica A167, 301 (1990).11. B. Spivak et al., Phys. Rev. B 64, 132502 (2001).12. S. Sachdev, P. Werner, and M. Troyer, Phys. Rev. Lett.92, 237003 (2004).13. B. Spivak, P. Oreto, and S.A. Kivelson, Phys. Rev. B77, 214523 (2008).�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 11 { 12 2010
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