
Pis'ma v ZhETF, vol. 91, iss. 12, pp. 685 { 689 c 2010 June 25Black hole motion in entropic reformulation of general relativityA.MorozovITEP, Moscow, RussiaSubmitted 13 May 2010We consider a system of black holes { a simplest substitute of a system of point particles in the mechanicsof general relativity { and try to describe their motion with the help of entropic action: a sum of the areasof black hole horizons. We demonstrate that such description is indeed consistent with the Newton's lawsof motion and gravity, modulo numerical coe�cients, which coincide but seem di�erent from unity. Since alarge part of the modern discussion of entropic reformulation of general relativity is actually based on dimen-sional considerations, for making a next step it is crucially important to modify the argument, so that thesedimensionless parameters acquire correct values.A recent paper [1] by Eric Verlinde attracted a newattention to the old idea of entropic reformulation of gen-eral relativity [2]. Naturally, this paper provoked anavalanche of new publications, we list just a few in [3].In this letter we provide still another small illustrationof how this idea could work, and what kind of discrep-ancies could arise in attempts to formulate and validateit at quantitative level.1. The problem and simplifying assumptions.In ordinary approach to quantum gravity one integratesover gravitational �elds fgg with the weight de�nedby Einstein-Hilbert (or Palatini) action Sfgg and somemeasure d�fgg:Z = Z eSfgg=~d�fgg: (1)Di�erent formulations of quantum gravity, from super-string theory to loop gravity, make use of di�erent real-izations (and, perhaps, generalizations) of Sfgg. At thesame time, quantum gravity is sometime believed to bea topological theory, and topological theories are thosewhich do not have a non-trivial action, S = 0, only themeasure d�. This motivates the search for a reformula-tion of general relativity, where Einstein action will besubstituted by some measure d�, which hopefully willbe of pure geometric nature. From the point of view ofthermodynamics, Z = eF=T , and dF = TdS�dE, wherethe �rst term, TdS, is associated with the measure d�,while the second, dE,{ with the action S. In topologicaltheories dE = 0 and Z = eS is de�ned by pure entropicconsiderations. Thus, if gravity is believed to be a topo-logical theory, it is actually believed to be pure entropic:instead of Einstein action one can use just the entropyfunction.Usually the simplest system to formulate and explorethe dynamical principles of the theory is a collection ofpoint particles. In the case of gravity there are no point

particles: the simplest objects which exist in this theoryare black holes. Thus the simplest toy model in gravityis a collection of black holes. The entropy function forthis system is de�ned by the sum of areas of the blackhole horizons, i.e. entropic action is simplyS = {~ � L2�DPl Xi Ai; (2)where Ai is the area of the horizon of the i-th black hole,MPl = L�1Pl is the Planck constant and the measure d�is now trivial. We write the action in D space-times di-mensions, to have one extra parameter, which can enterexpressions for dimensionless coe�cients in what fol-lows.Of course, in entropic formulation there is no space-time, thus D is no more than a free parameter of thetheory. Moreover, there is also no Plank constant ~ ineS=~, all dynamics in topological theory is pure com-binatorial: dictated by counting of degrees of freedom(basically a calculus of integers, a section in number the-ory, perhaps, subjected to one or another regularizationwhen D exceeds 2). The minimal action principle isstill applicable in the classical approximation, when Sis large, i.e. when all the distances, i.e. Schwarzschildradia and distances between the black holes are large ascompared to the Planck length LPl. In what follows wekeep LPl = 1 to simplify the formulas.To promote the geometric formula (2) into a real dy-namical principle one needs to specify, how the areasAi depend on the state of the system, i.e. on locationof our black holes and their velocities. Di�erent ver-sions of gravity theories (say, di�erent modi�cations ofEinstein-Hilbert or Palatini actions) can provide di�er-ent expressions, but all of them are quite sophisticatedand non-local. They are, however, drastically simpli�edfor remote black holes, when distances between themare much bigger then their Schwarzschild radia, and this�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 11 { 12 2010 685



686 A.Morozovis the case that we are going to analyze in the presentletter.Moreover, we make two further simplifying assump-tions. First, we de�ne the horizons by Laplace's princi-ple: that the second cosmic (parabolic) velocity is equalto the light speed c = 1. Second, most disputable, we as-sume that the shape of the horizon of a moving black holeis deformed by Lorentz contraction in the longitudinaldirection (e.g. a spherical horizon for an isolated blackhole becomes an axially symmetric ellipsoid). These as-sumptions make calculations trivial and provide a clearpicture of what happens without going deep into sophis-ticated analysis of non-linear gravity.2. Kinematics: the second Newton's law. Ingeneral relativity our particles (black holes) are never atrest: there is no parameter (like large mass) which couldbe adjusted to keep them in a given position. Moreover,they are necessarily accelerated. Thus the �rst questionto ask is where acceleration is in the action principle (2).The answer is already suggested in [1]: for every par-ticular probe black hole we have a kind of a Newton'ssecond law, ma = �{ T �A�x ; (3)where m is the mass, T the temperature (inverse ofSchwarzschild radius r), A the area A � rD�3, {A theentropy, and x, v and a are position, velocity and accel-eration of the black hole.We, however, prefer to interpret/derive the \Newtonlaw" (3) in a somewhat di�erent way from [1]: just asa simple kinematical relation. Namely, imagine that ourparticle (black hole) just started to move. Then duringthe time �t it passes the distance�x = a�t22 ; (4)then a�x = v22 (5)is expressed through velocity v = a�t that it �nallyachieved. At the same time, the horizon of the blackhole is now deformed by the Lorentz contraction: in-stead of a sphere with the area A = �r2 it is now anellipsoid with the smaller areaA+ �A = A(1� CLCv2): (6)Thusa�x = v22 = � 12CLC � �AA = �CNL{ T�Am ; (7)

where CNL = m{AT � 12CLC : (8)If black hole was already moving then v is not in�nites-imally small, and �x = v�t. Still a�x = av�t = v�v,while �A = �2CLCAv�v, so that (7) is preserved withthe same value of CNL. This is consistent with (3) {though is a somewhat weaker, a scalar rather then avector relation { up to numerical constant CNL, whichstill needs to be evaluated.Evaluation of CNL seems quite important. The pointis that (3) can actually be written on pure dimensiongrounds { provided one wants to �nd some relation ofthis kind. What could take us further, beyond pure di-mensional consideration, and thus provide a real quan-titative argument in support of entropic-reformulationideas, is evaluation of dimensionless numerical coe�-cients. This is what makes any practical way to calculateCNL so interesting. Of course, in the case of our simplemodel this is straightforward: to �nd CNL we need toknow the Lorentz-contraction factor CLC and the ratio{AT=m. This will be the subject of the sections 4 and5 below.Note that there was no reference to the action prin-ciple (2) in this section: Eq.(7) is a pure kinematicalrelation.3. Dynamics: the Newton's gravity law. Theaction plays role when we study the interaction of sev-eral black holes. Then there are two competing e�ects.First, black hole horizon is deformed in the presence ofgravitational �eld of the other black holes, this leads toincrease of the area. Second, the �eld accelerates theblack hole, what decreases the area due to Lorentz con-traction. The minimal action principle requires that thetwo e�ects exactly compensate each other.Laplace principle easily de�nes the horizon of twoblack holes at rest:m1jr� x1jD�3 + m2jr� x2jD�3 = C�1pot (9)Cpot is a D-dependent Newton's constant, whose exactvalue is irrelevant in consideration of this section.If the distance R between the black holes is muchbigger than their Schwarzschild radia then in the �rstapproximation we getm1rD�31 = C�1pot � m2RD�3 (10)i.e.A1=
D�2rD�21 = 
D�2 m1C�1pot �m2=RD�3!D�2D�3 :(11)�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 11 { 12 2010



Black hole motion in entropic reformulation of general relativity 687The closer the black holes the bigger are their horizons.Under a small shift �x1 of the black hole in space itshorizon area changes:�A1 �(D � 2)�r1r1 � 2CLC(a1�x1)� = 0: (12)The second item is the e�ect of Lorentz contraction andthe sum of two terms vanishes on equation of motion for(2). We assume here that the equations of motion fordi�erent black holes are fully separated.From (10) we have:m1rD�31 �r1r1 = � m2RD�2 �R; (13)where R�R = R�x1. Thus (12) is consistent (again upto a di�erence between scalar and vector equations) withthe Newton's gravity law:a1 = �CGLr1�Cpotm2RD�3 � (14)with CGL = D � 2D � 3 � 12CLC : (15)4. Black hole numerology. While CGL in (15)depends on nothing but the Lorentz contraction factorcCL, the kinematical factor CNL in (8) is di�erent: it in-volves detailed information about the black hole physics[4 { 8].As explained at the end of section 1, we de�ne theSchwarzschild radius r by equating the parabolic veloc-ity to c = 1, i.e. from the conditionCpot mrD�3 = 1: (16)We already used a more involved version of this equa-tion in (9).Parameter Cpot is normalization of a Greenfunction for Laplace equation in D � 1 dimensions,�D�1 �Cpot mrD�3 � = CLm�(D�1)(r). The Gauss lawthen implies, thatCpot(D � 3)
D�2 = CL: (17)The Hawking temperature isT = CT =r (18)where CT can be de�ned from quasiclassical considera-tions [5], a simple version of such derivation is recentlyanalyzed in [8].

The area of the spherical horizon in the rest frameof the black hole isA = 
D�2rD�2; (19)where the angular integral
D�2 = 2�D�12� �D�12 � : (20)Finally, the entropy of the black hole is proportional,which presumably enters the r.h.s. of (3), is proportionalbut not equal to the area,Entropy = S=~ = {A: (21)In terms of these parameters the ratio�ATm = {CTCpot
D�2 = {CTCLD � 3 : (22)The values of the parameters for D = 4 are known since[5]: D = 4 : Cpot = 2; { = 14 ; CT = 14� ;
2 = 4� =) {ATm = 12 : (23)Generalization to arbitrary D is now available in manypapers, see, for example, [6]. We borrow concrete for-mulas from a recent review [7]:Cpot
D�2 = 16�D � 2 ; { = 14 ;CT = D � 34� =) {ATm = 4{ � D � 3D � 2 = D � 3D � 2 : (24)Substituting this ratio into (8), we obtain:CNL = D � 2D � 3 � 12CLC (15)= CGL : (25)Remarkably, the two coe�cients CNL and CGL, whichboth need to be unities for entropic principle to work,at least coincide for arbitrary space-time dimension D.5. The Lorentz-contraction factor and para-meters CNL and CGL. To check if the common valueof the two parameters is unity or not, we need to evaluatethe Lorentz-contraction factor CLC . It de�nes the devi-ation relative area of the surface of the axially symmetricellipsoid x21+ : : :+x2D�2+2z2 = 1 with �1 = p1� v2and 
D�2 from unity for v2 � 1:2CLC = R �0 sinD�1 �d�R �0 sinD�3 �d� = D � 2D � 1 : (26)�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 11 { 12 2010



688 A.MorozovSubstituting this value into (25) we �nally obtain:CNL = CGL = D � 2D � 3 � 12CLC = D � 1D � 3 6= 1 : (27)6. Conclusion. The main goal of this letter was ex-plicit evaluation of two numerical coe�cients: CNL andCGL in the second (7) and gravitation (15) laws respec-tively. For entropic reformulation of general relativity towork in its most naive form, based on the action princi-ple (2), these two coe�cients should be equal to unity.We did not manage to adjust them in this way, moreover,our answers depend non-trivially on the free parameterD { the space-time dimension. Remarkably, though notunities, the two coe�cients are the same, and both dis-crepancies can be simultaneously cured if one slightlychanges the de�nition of the Lorentz-contraction factor,from (26) to (D � 2)=(D � 3), for example, by postu-lating the velocity-dependence of the action (2) in theform Arest �1� D�2D�3 � v22 +O(v4)�. Such ad hoc postu-lates would, however, decrease the attractiveness of theentire approach and therefore are undesirable. Beforeone can move further with quantitative development ofentropic reformulation along the lines of our section 1,which would include gravitational radiation and correc-tions beyond classical (small LPl) approximation, andtheir comparison with various programs of gravity quan-tization, it is necessary to �nd and correct the mistakes(arithmetical or conceptual) in the simple calculations,described in above sections 2-5. The next small stepwould be to consider the next corrections in v=c andr=R, also including non-linear e�ects of general relativ-ity (like those, responsible for perihelion shift and theLamb shift of orbital frequencies [9]).I am indebted for stimulating discussions of relatedsubjects to E.Akhmedov, S.Apenko and A.Mironov.I also appreciate corrections and advice by P.Burda,D.Diakonov, V. Shevchenko and A. Sleptsov. Of course,they are in no way responsible for possible mistakes inthe present paper.The work was partly supported by Russian Fed-eral Nuclear Energy Agency, by Russian Education andScience Ministry under the contracts 02.740.5029 and02.740.11.5194, by CNRS, by RFBR grant #10-02-00499, and by the joint grants RFBR-CNRS #09-01-93106, # 09-01-92440-CE, #09-02-91005-AFN, #09-02-90493-Ukr, # 10-02-92109-Yaf-a.1. E. Verlinde, arXiv:1001.0785.2. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973); Phys.Rev. D 9, 3292 (1974); Phys. Rev. D 23, 287 (1981);J.M. Bardeen, B. Carter, and S.W. Hawking, CMP
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