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Black hole motion in entropic reformulation of general relativity
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We consider a system of black holes — a simplest substitute of a system of point particles in the mechanics
of general relativity — and try to describe their motion with the help of entropic action: a sum of the areas
of black hole horizons. We demonstrate that such description is indeed consistent with the Newton’s laws
of motion and gravity, modulo numerical coefficients, which coincide but seem different from unity. Since a
large part of the modern discussion of entropic reformulation of general relativity is actually based on dimen-
sional considerations, for making a next step it is crucially important to modify the argument, so that these

dimensionless parameters acquire correct values.

A recent paper [1] by Eric Verlinde attracted a new
attention to the old idea of entropic reformulation of gen-
eral relativity [2]. Naturally, this paper provoked an
avalanche of new publications, we list just a few in [3].
In this letter we provide still another small illustration
of how this idea could work, and what kind of discrep-
ancies could arise in attempts to formulate and validate
it at quantitative level.

1. The problem and simplifying assumptions.
In ordinary approach to quantum gravity one integrates
over gravitational fields {g} with the weight defined
by Einstein-Hilbert (or Palatini) action S{g} and some
measure du{g}:

7= [estodiraufg). (1)

Different formulations of quantum gravity, from super-
string theory to loop gravity, make use of different real-
izations (and, perhaps, generalizations) of S{g}. At the
same time, quantum gravity is sometime believed to be
a topological theory, and topological theories are those
which do not have a non-trivial action, S = 0, only the
measure du. This motivates the search for a reformula-
tion of general relativity, where Einstein action will be
substituted by some measure dp, which hopefully will
be of pure geometric nature. From the point of view of
thermodynamics, Z = ef/T and dF = T'dS —dE, where
the first term, T'dS, is associated with the measure dy,
while the second, dE,— with the action S. In topological
theories dE = 0 and Z = e is defined by pure entropic
considerations. Thus, if gravity is believed to be a topo-
logical theory, it is actually believed to be pure entropic:
instead of Einstein action one can use just the entropy
function.

Usually the simplest system to formulate and explore
the dynamical principles of the theory is a collection of
point particles. In the case of gravity there are no point
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particles: the simplest objects which exist in this theory
are black holes. Thus the simplest toy model in gravity
is a collection of black holes. The entropy function for
this system is defined by the sum of areas of the black
hole horizons, i.e. entropic action is simply

S=uh-Lp" ) Ay (2)

where A; is the area of the horizon of the i-th black hole,
Mp; = L;ll is the Planck constant and the measure du
is now trivial. We write the action in D space-times di-
mensions, to have one extra parameter, which can enter
expressions for dimensionless coefficients in what fol-
lows.

Of course, in entropic formulation there is no space-
time, thus D is no more than a free parameter of the
theory. Moreover, there is also no Plank constant % in
eS/" all dynamics in topological theory is pure com-
binatorial: dictated by counting of degrees of freedom
(basically a calculus of integers, a section in number the-
ory, perhaps, subjected to one or another regularization
when D exceeds 2). The minimal action principle is
still applicable in the classical approximation, when S
is large, i.e. when all the distances, i.e. Schwarzschild
radia and distances between the black holes are large as
compared to the Planck length Lp;. In what follows we
keep Lp; = 1 to simplify the formulas.

To promote the geometric formula (2) into a real dy-
namical principle one needs to specify, how the areas
A; depend on the state of the system, i.e. on location
of our black holes and their velocities. Different ver-
sions of gravity theories (say, different modifications of
Einstein-Hilbert or Palatini actions) can provide differ-
ent expressions, but all of them are quite sophisticated
and non-local. They are, however, drastically simplified
for remote black holes, when distances between them
are much bigger then their Schwarzschild radia, and this
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is the case that we are going to analyze in the present
letter.

Moreover, we make two further simplifying assump-
tions. First, we define the horizons by Laplace’s princi-
ple: that the second cosmic (parabolic) velocity is equal
to the light speed ¢ = 1. Second, most disputable, we as-
sume that the shape of the horizon of a moving black hole
is deformed by Lorentz contraction in the longitudinal
direction (e.g. a spherical horizon for an isolated black
hole becomes an axially symmetric ellipsoid). These as-
sumptions make calculations trivial and provide a clear
picture of what happens without going deep into sophis-
ticated analysis of non-linear gravity.

2. Kinematics: the second Newton’s law. In
general relativity our particles (black holes) are never at
rest: there is no parameter (like large mass) which could
be adjusted to keep them in a given position. Moreover,
they are necessarily accelerated. Thus the first question
to ask is where acceleration is in the action principle (2).
The answer is already suggested in [1]: for every par-
ticular probe black hole we have a kind of a Newton’s
second law,

ma= —sxT g (3)
where m is the mass, T the temperature (inverse of
Schwarzschild radius r), A the area A ~ 7?73, A the
entropy, and x, v and a are position, velocity and accel-
eration of the black hole.

We, however, prefer to interpret/derive the “Newton
law” (3) in a somewhat different way from [1]: just as
a simple kinematical relation. Namely, imagine that our
particle (black hole) just started to move. Then during
the time §t it passes the distance

2
b = 20, (4)
then
2
adz = % (5)

is expressed through velocity v = adt that it finally
achieved. At the same time, the horizon of the black
hole is now deformed by the Lorentz contraction: in-
stead of a sphere with the area A = 7r? it is now an
ellipsoid with the smaller area

A+ 84 =A(1 - Cpev?). (6)

Thus

v? 1 0A
a(sZL‘—E—_QCLC'I—_CNL m ) (7)

where

. m 1
T xAT 2CLc |

(8)

CnL

If black hole was already moving then v is not infinites-
imally small, and §x = vét. Still adx = avit = viv,
while §4 = —2CcAvév, so that (7) is preserved with
the same value of Cr. This is consistent with (3) —
though is a somewhat weaker, a scalar rather then a
vector relation — up to numerical constant C'yr, which
still needs to be evaluated.

Evaluation of C'y seems quite important. The point
is that (3) can actually be written on pure dimension
grounds — provided one wants to find some relation of
this kind. What could take us further, beyond pure di-
mensional consideration, and thus provide a real quan-
titative argument in support of entropic-reformulation
ideas, is evaluation of dimensionless numerical coeffi-
cients. This is what makes any practical way to calculate
Cnr so interesting. Of course, in the case of our simple
model this is straightforward: to find Cn we need to
know the Lorentz-contraction factor Crc and the ratio
2 AT /m. This will be the subject of the sections 4 and
5 below.

Note that there was no reference to the action prin-
ciple (2) in this section: Eq.(7) is a pure kinematical
relation.

3. Dynamics: the Newton’s gravity law. The
action plays role when we study the interaction of sev-
eral black holes. Then there are two competing effects.
First, black hole horizon is deformed in the presence of
gravitational field of the other black holes, this leads to
increase of the area. Second, the field accelerates the
black hole, what decreases the area due to Lorentz con-
traction. The minimal action principle requires that the
two effects exactly compensate each other.

Laplace principle easily defines the horizon of two
black holes at rest:

= 5 = G (9)

pot

[r — %P3 |r—x|P3

Cpot is a D-dependent Newton’s constant, whose exact
value is irrelevant in consideration of this section.

If the distance R between the black holes is much
bigger than their Schwarzschild radia then in the first
approximation we get

mi A1 mo

TP—3 pot RD-3

(10)

i.e.

D—-3
_ m
A1=Qp_srP 2 =Qp_» ( — ml/RD—3> .(11)
—ma

pot
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The closer the black holes the bigger are their horizons.
Under a small shift dx; of the black hole in space its
horizon area changes:

é

A, ((D )L 2ch(a15x1)> =0. (12)
1

The second item is the effect of Lorentz contraction and

the sum of two terms vanishes on equation of motion for

(2). We assume here that the equations of motion for

different black holes are fully separated.
From (10) we have:

my Ory mo
—— =——"20R 13
’r‘f)ig r1 RD-2 ’ ( )

where R6R = Rdx;. Thus (12) is consistent (again up
to a difference between scalar and vector equations) with
the Newton’s gravity law:

Crorm
a; = —Car Vi < £$32> (14)
with
D—-2 1
Cor = ——= - . 15
GL = D3 2CLc (15)

4. Black hole numerology. While Cgy, in (15)
depends on nothing but the Lorentz contraction factor
cor, the kinematical factor Cvr, in (8) is different: it in-
volves detailed information about the black hole physics
[4-38].

As explained at the end of section 1, we define the
Schwarzschild radius r by equating the parabolic veloc-
ity to ¢ =1, i.e. from the condition

m

ot D3 =1 (16)

Cp
We already used a more involved version of this equa-
tion in (9).

Parameter Cpo is normalization of a Green
function for Laplace equation in D — 1 dimensions,
Ap_i (Cpot:825) = CrmdéP~Y(r). The Gauss law
then implies, that

Cpot (D —3)Qp_2 = Cy,. (17)
The Hawking temperature is
T=Cr/r (18)

where Cr can be defined from quasiclassical considera-
tions [5], a simple version of such derivation is recently
analyzed in [8].
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The area of the spherical horizon in the rest frame
of the black hole is

A= QD,27‘D72, (19)

where the angular integral

D—1
2w 2

Qp 2= (20)

Finally, the entropy of the black hole is proportional,
which presumably enters the r.h.s. of (3), is proportional
but not equal to the area,

Entropy = S/h = »A. (21)

In terms of these parameters the ratio

»CrCp,
D-3"

kATm = %CTCpotQD—2 = (22)

The values of the parameters for D = 4 are known since

[5]:

1 1
D=4: Chot =2, %Zz, CTZE,
(23)
AT 1
Q=dr = T =
m 2

Generalization to arbitrary D is now available in many
papers, see, for example, [6]. We borrow concrete for-
mulas from a recent review [7]:

167 1
Cootdp_2 = D_2 =1
(24)
o, _D-3 _ xAT _ D-3 D-3
7= Tan m  D-2 D-2
Substituting this ratio into (8), we obtain:
D-2 1 (s
Cne = ——- =" Cqar | 25
NL = 53 30,0 GL (25)

Remarkably, the two coefficients C; and Cgr, which
both need to be unities for entropic principle to work,
at least coincide for arbitrary space-time dimension D.

5. The Lorentz-contraction factor and para-
meters Cnr and Cgr. To check if the common value
of the two parameters is unity or not, we need to evaluate
the Lorentz-contraction factor Crc. It defines the devi-
ation relative area of the surface of the axially symmetric
ellipsoid 23 +...+ 2%, ,+v%2% =1 withy ! =1 — 02
and Qp_, from unity for v2 < 1:

Jo sin”'6d6 D2
Jysin®S0dg  D-1

2CLc = (26)
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Substituting this value into (25) we finally obtain:

D-2 1 D-1
D-3 2Cc D-3

Cnip =Cqr =

£1 | (@27

6. Conclusion. The main goal of this letter was ex-
plicit evaluation of two numerical coefficients: C'nr and
Cg1 in the second (7) and gravitation (15) laws respec-
tively. For entropic reformulation of general relativity to
work in its most naive form, based on the action princi-
ple (2), these two coefficients should be equal to unity.
We did not manage to adjust them in this way, moreover,
our answers depend non-trivially on the free parameter
D — the space-time dimension. Remarkably, though not
unities, the two coefficients are the same, and both dis-
crepancies can be simultaneously cured if one slightly
changes the definition of the Lorentz-contraction factor,
from (26) to (D —2)/(D — 3), for example, by postu-
lating the velocity-dependence of the action (2) in the

form A es: (1 - D=2. % + O(v4)). Such ad hoc postu-
lates would, however, decrease the attractiveness of the
entire approach and therefore are undesirable. Before
one can move further with quantitative development of
entropic reformulation along the lines of our section 1,
which would include gravitational radiation and correc-
tions beyond classical (small Lp;) approximation, and
their comparison with various programs of gravity quan-
tization, it is necessary to find and correct the mistakes
(arithmetical or conceptual) in the simple calculations,
described in above sections 2-5. The next small step
would be to consider the next corrections in v/c and
r/R, also including non-linear effects of general relativ-
ity (like those, responsible for perihelion shift and the
Lamb shift of orbital frequencies [9]).
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