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We present a geometric construction of 2D chiral boson theories on manifolds with tangent bundle ad-
mitting flat connection with possible torsion. The construction is based on embedding of the theory into the
supersymmetric 3y — be system. To perform the embedding we do a covariant smooth point-splitting of vector
field observables and then the fermions are killed by a strongly oscillating chiral gauge transformation.

1. Motivation. In the traditional perturbative QFT
one defines a quantum theory using Gaussian functional
integrals and treating interactions perturbatively. This
approach does not give a non-perturbative definition
of the theory. For instance, in the non-Abelian gauge
theories one approximates the non-Abelian fields with
Abelian ones when making a perturbative expansion. It
is thus desirable to account for the non-linearity exactly
when formulating the quantum theory.

Two-dimensional sigma models may be considered
as toy models for gauge theories, and non-linearity is
expressed in the sigma-models through the absence of
global linear structure on the target manifold. Some 2D
sigma-models for target spaces without linear structure
(e.g. a group manifold) can be successfully formulated
in the axiomatic current-algebra approach [1, 2], but it
is not clear how to generalize such approach to include
instantons.

Recently a class of supersymmetric theories was con-
sidered that allows for non-linear formulation. These
are the non-linear geometric (or “instantonic”) quantum
field theories in 1,2 and 4 dimensions constructed and
studied in the works [3 5], see also [6]. These theories
correspond to supersymmetric Morse quantum mechan-
ics, supersymmetric 3y — bc field theory and N = 2
twisted super-Yang-Mills theory at instantonic point.
All these theories may be formulated geometrically by
exact localization to finite-dimensional space — the mod-
uli space of generalized instantons. This allows to ac-
count exactly for the non-linearity.

In this letter we study the question of extending
the above non-linear formulation to non-supersymmetric
theories. To do this we want to see the bosonic theory
inside the geometric supersymmetric theory.

This idea is quite natural since supersymmetric
theories are known to have better UV properties,!

1) Geometric supersymmetric theories are even stronger: they
are finite and allow for a non-linear formulation.

hence considering non-supersymmetric theories as
softly-broken supersymmetric ones gives an improved
non-perturbative version of Pauli-Villars regulators.
Equivalently, this means that one maps the observables
of the bosonic theory to observables of a super-
symmetric theory, since states may be created by
observables.

A natural way to perform such a mapping is to take
a bosonic correlation function and put an extra observ-
able, corresponding to a large mass term for fermions
(i.e. soft-breaking term). In this letter we show how
this general recipe works and for the case of target space
admitting flat tangent bundle (with possible torsion) we
arrive at the chiral boson theory equivalent to the one
formulated in axiomatic approach.

We study the problem in 1 and 2 dimensions. In par-
ticular, in 1 dimension we want to define bosonic corre-
lators in geometric supersymmetric quantum mechanics
with action

. a i a i
S = —z/dt <pi§X —ﬂiazp) (1)

and in 2 dimensions we want to see the non-linear the-
ory of chiral 2) boson inside the geometric N' = (2,2)
supersymmetric 3y — be field theory with action

S = _i/ &2(pdX* — mdy' + pr0X' — m0Y')  (2)
P

We follow here the notations of [3—5] (8; = p;, v¢ = X,
bi = T;, Ci = ’l/)l)

This study is partially motivated by applications to
elucidating the pure spinor approach to superstring the-
ory: non-supersymmetric “curved gvy-systems” play an
important role in this approach [7].

In case of target manifolds with linear structure, the
fermions ¢ and m; correspond to dX* and t5/p9x: and

2) Actually, the resulting theory may occur non-chiral for target
manifolds not admitting flat tangent bundles.
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one may get the bosonic theory simply by crossing out
the fermions 7 and ¥ in the above supersymmetric the-
ory, but otherwise the fermions do not have any global
coordinate-independent meaning (in simple terms, the
target space coordinate transformations mix p with 1)),
so it is non-trivial to single out the bosonic observables.

To see a bosonic theory we consider the method
of adding a large fermionic mass term of the form
exp{ [ d*zmm(2)¥(z)}. The main obstacle we meet in
2D case is that any mass term of this form is actually
a gauge field and can be eliminated by gauge-rotating
m and ¢ fields, as was pointed out by Nekrasov [8].
We turn this obstacle into a positive feature: we de-
fine a mass term as a strongly-oscillating gauge trans-
formation of fermions, so that any observables having
non-vanishing fermionic charge start to give strongly-
oscillating (in worldsheet position) contribution to cor-
relation function. Smoothing the evaluation-point leads
to suppression of fermions. Thus, we introduce a hi-
erarchy of distance scales: small, medium and large:
1/m < € < bos, where 1/m is a scale of oscillations
due to “mass” for fermions, € is a smooth point-splitting
scale and bos is a scale at which we get the bosonic the-
ory. Similarly, the supersymmetric observables corre-
sponding to local vector fields should be made smoothly
non-local by covariant point-splitting (here one needs
to choose the connection in 7X). This procedure sin-
gles out the right amount of vector fields (satisfying
Dv; = 0), corresponding to “primary” bosonic currents,
while the remaining vector fields correspond to compos-
ite bosonic observables regularized with chosen point-
splitting.

To get the axiomatic bosonic theory for parallelizable
manifolds our prescription finally boils down to: make a
covariant point-splitting and then cross out all observ-
ables having non-zero fermionic charge.

In order to avoid complications, we assume that the
volume form used in construction of the bosonic theory
is invariant under the action of vector fields that paral-
lelize X.

We hope that such constructions may be generalized
to theories with instantons.

2. Overview of geometric theories. Here we re-
view briefly how to deal with geometric (or instantonic)
field theories on the example of By — be theory (2). Such
theories are rigorously defined on any almost-complex
target manifold by postulating the prescription of lo-
calization on the zeroes of the vector field X [3-5].
Fermions 1¢(z) are identified with dX?(z) and the sim-
plest “evaluation” observables correspond to differential
forms on X. The supercharge acts as a de Rham differ-
ential on X: @@ = dx. The correlation functions of eval-
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uation observables are computed by pulling them back
to the moduli space of solutions to X = 0 (or, in gen-
eral, to zeroes of any vector field on the space of map
that we provide) and integrating over it. Closed forms
correspond to BPS (topological) sector and their corre-
lators generate the celebrated Gromov-Witten invarints.

The general correlation functions, containing mo-
mentum fields (p; and 7;), correspond to deforming the
vector field on the space of maps ¢ : ¥ — X; 2 — X (2)
from 80X to v, = 0X + €*V,. Here V, and 0X are ele-
ments of Q(®V) ()@ p*(T(+0) X). In general, V,, may be
any (non-local) vector field depending on maps ¥ — X
and we need to search for the map ¢ which for any z
solves

E_X(z)dz + €*Vu(z,) = 0. (3)
0z

The evaluation observables are then localized to the
solution of (3). Acting on the resulting correlator with
Lie derivative £5/5.« and then setting €* = 0 we get
Oy, observable, or, acting with substitution t5/gc=, We
get wy, observable — these observables thus correspond
to infinitesimal deformations. Since when paired with
deformation by V,, these observables give a number, they
are naturally the (1,0)-forms on ¥ (natural pairing as-
sumes integration over X).

A special case of these general deformation observ-
ables is when the vector field V' (¢) on maps is induced
by a vector field v € I'(T'X) on the target manifold X
and a (0,1)-form on ¥ . If we simply take

Va((P, Z) = va(X(z))LB/Bz(s(Z) (z - zv) (4)

it would be a local vector field. In coordinate chart the
corresponding observables are

Oy, (zv):ipi(zv)vfx (X (20)) — iﬂi(zv)ajvfx (X(Zv))wj (?v;
5

Ty, (20) =1 Wi(zv)vfx (2w)- (6)

The more general observables that may be con-
structed from the vector field on X and some parallel
transport operator T'(z, z') on ¢*I'(T' X) and some forms

(1,1)
Wz

space of maps given by

and w(®1 on ¥ correspond to vector fields on the

Va(p, 2) = / wOD () WD () T (2, 2') valp(2") (7)

here T'(z,z') is some parallel transport from X (z') to

X (z). This vector field reduces to the local one (4) if
w®D(z) = L3/325(2) (z—2,) and wgl’l)(z’) =0 (z-2"),
6*
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otherwise, we get a class of natural non-local geometric
regularizations of local observables which we would use
below to define the low-energy theory.

3.Constructing a bosonic theory.

3.1 One-dimensional case: quantum mechanics.
Consider as a toy model the SUSY QM (1) on the in-
terval ¢ € [0,1] with free boundary conditions and with
real target R™. In Hamiltonian formalism the states are
differential forms on R™ and the Hamiltonian is zero.

Consider a large mass term ima)im; for fermions,
where m > 0 is a constant 1-form on the worldsheet,
we remark that ny = it'm; = dX'15/5x: is a coordinate-
independent fermion number (form degree) operator. To
saturate the fermionic zero-modes we insert a volume
form on X at t = 1. This mass term may be represented
as Hamiltonian m ny, and at time intervals ¢ > 1/m the
evolution operator e *# acts a projector to 0-forms, so
any fermionic correlation functions at distances > 1/m
are exponentially suppressed.

Let us now represent the basic set of observables
of the low-energy “bosonic” theory as observables in
SUSY theory. These are the function evaluation observ-
ables and vector-field observables. We assume that other
bosonic observables may be constructed by fusing the
basic ones, but at distances still larger then 1/m. Fermi-
onic correlators are screened at large distances while the
same-point ¢ 7 gives a fermion number, which is zero
or some number if we change the ordering. So, we can
cross out fermions (except for the volume form). Now
we can unwind the fermionic gauge transformation, it
would remove the “mass term”, but otherwise would
change nothing since bosonic observables are blind to
this transformation. It shows that the recipe to cross
out fermions gives a consistent embedding into super-
symmetric theory.

For example, the local O,(x) observable in SUSY
theory corresponds in Hamiltonian and geometric for-
malisms to Lie derivative £, acting on wave-forms. Tak-
ing it to the low-energy bosonic theory results in the
same L, (since it has only same-point 7t fermions), but
now acting on functions, which is obviously coordinate-
invarint.

3.2 Imaginary mass. Let us consider the imaginary
mass m, this is motivated by 2D case, see below. This
mass term is equivalent to the oscillating gauge trans-
formation:

P(t) = Y(t)e™ & 7(t) = w(t)e” ™. (8)

The new fermionic propagator of the massive theory is
easily related to the massless one:

(TP )m = (w()p(E))e ™1, 9)

The partition function is unchanged. To kill fermi-
ons, the bosonic observables should be mapped to the
“smoothened” ones in the SUSY theory. Smoothing is
very natural for constructing observables of low-energy
theory.

3.2.1. Smoothened observables. As a first attempt
we try taking geometric observables, corresponding to
differential forms w;1¢ or vector fields O, at some point
t and then smoothen the evaluation point: O(t) —
— [we(t' — t)O(t")dt'. Since the mass is equivalent
to a strongly fluctuating gauge transformation for ¢ and
m, convolving this gauge transformation with a smooth
function leads to vanishing of fermion correlations.

For example, with a Gaussian smoothing

we(t' _ t) — Le7|i'7t|2/e2
TE

the smoothened fermionic correlator tends rapidly to
zero when

Im| > € as (n(t)ye(t)) ~ e 2m (e, ¢,

where G is of order of unity. The problem arises with
local O, current, containing 7 and 1 at the same point!
To eliminate fermions, we need to smoothly point-split
m and 1), so that the microscopic vector field observable
becomes non-local.

In geometric formalism we map a local vector field
on the space of maps to the non-local one. For that we
need to introduce additional data: the connection on the
target X, and insert a parallel transport operator T,
which is a transport from X (t) to X (¢') along the image
of the worldsheet:

X(t")

T;(X(t),X(t")) = Pexp / 9, X dt, (10)

X(t)

with left-to-right ordering. We assume for simplicity
that TX admits a flat connection (with possible tor-
sion). Then we map a local vector field on ¥ — X,
induced by vector field v on X, to the non-local one as
in eq.(7). In one dimension w, w; are 1-forms and we
choose them to have support € with hierarchy of scales
1/m < e K bos.

The corresponding smooth Oy observable is given in
some coordinates by?)

—i0y(t) = (11)

= / dt'p: (YT (X (), X (¢)) v/ (X (¢)) w(t — ¢') -

3)We set w(t) = §(t) and we(t') = w(t — t').
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/dt'm(ﬂ:r;(X(t),X(t'))(akvf(X(t')w (Eyw(t—t)+
ﬁt'm(t) b (O0H (T (X (), X (¢)0? (X (¢))w(t—t') -
ﬁt'm(tw; (X (1), X (#)T (¢) 6" (¢)o? (X () w(t—¢).

When introducing the mass, this becomes the regulated
bosonic observable.

3.3. Two-dimensional case: Chiral boson. Consider
the geometric theory corresponding to action (2). Now
any mmi) mass term is generated by a gauge transfor-
mation:

PP PiU(2,2) & m = mU Y (z,7) (12)

for example, one can take U = e2™™(m2) or something
similar that satisfies some chosen boundary conditions
on the worldsheet. So, the mass term can be considered
geometrically as a gauge transformation U.

Analogously to quantum mechanics with imaginary
mass, a reasonable smoothing of observables kills the
fermions. To construct the geometric representation of
bosonic holomorphic current observable, we exactly re-
peat the construction (11) in two dimensions.

The vector fields satisfying the condition

Dv =0 (13)

generate the primary bosonic currents: there are no
quadratic poles in the effective low-energy OPE of such
currents and they require no subtractions to give fi-
nite correlators. To prove this claim note that the
smoothened supersymmetric current looks as in Eq.(11)
(with t replaced by z). Any such current behaves as
“primary” in the geometric theory. But now we intro-
duce the mass that kills the second and the last terms in
Eq.(11) at large bosonic scales. If v satisfies the Eq.(13)
then terms 2 and 4 cancel each other, and so the mass
actually does nothing®. Hence for such bosonic currents
the OPE is the same as in the supersymmetric theory:

1

zZ—w

0,i(2)Oyi (w) ~ Olvi,vil(w) (14)

For example, if the connection is induced by changing
coordinates from those in which connection was zero:

4)The same-point operators m(z)1(z) defined by point-splitting
can be made insensitive to gauge-transformation U by putting U !

in the definition of the point-splitting:
36

st susy (2) = m(2)U(2,2)09 (2 + €Uz + 6,2+ €) — 51

this corresponds to removing of the Quillen anomaly.
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I‘{,l = —Bkglj, (gfl)f’, where g is a Jacobian for change
of variables; then the set of solutions to Eq.(13) is given
by vector fields: v{a) =gl.

3.4 Theory on the group manifold. As an example,
consider the chiral bosonic theory on the complex group.
Consider holomorphic left-invarint vector fields on the
group manifold. Then there is a natural flat connection
induced by parallel transport with these vector fields.
Making a smoothing with this connection we establish
correspondence between the the SUSY currents and the
primary bosonic currents.

To saturate the fermionic zero modes, corresponding
to translations along X, we insert an invariant volume
form, smoothing is not needed for it. The resulting the-
ory, restricted to holomorphic subsector, is then equiva-
lent to first-order bosonic theory on the group manifold
with action

S = —i/ Paw), ox*, (15)

where wj dX* are left-invarint 1-forms on the group
manifold.

The work of A.L. was supported by grant for sup-
port of Scientific Schools L.SS-3036.2008.2 and RFBR
grant # 07-01-00526. S.S. acknowledges Prof. Antti
Niemi and support of STINT Institutional Grant and
VR Grant 2006-3376.

1. F. Malikov, V. Schechtman, and A. Vaintrob, Comm.
Math. Phys. 204, 439 (1999).

2. N. Nekrasov, Lectures on curved beta-gamma systems,
pure spinors, and anomalies, Preprint hep-th/0511008.

3. E. Frenkel, A. Losev, and N. Nekrasov, arXiv:hep-
th/0610149.

4. E. Frenkel, A. Losev, and N. Nekrasov, Nucl. Phys.
Proc. Suppl. 171, 215 (2007) [arXiv:hep-th/0702137].

5. E. Frenkel, A. Losev, and N. Nekrasov, arXiv:0803.3302
[hep-th].

6. A.Losev and S. Slizovskiy, New observables in topolog-
ical instantonic field theories, arXiv:0911.2928 [hep-th],
submitted to JHEP.

7. N. Berkovits, Super Poincare covariant quantization
of the superstring, JHEP 0004:018 (2000), arXiv:hep-
th/0001035.

8. N. Nekrasov, private communication



