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Starting from the simplified analytic model of electronic spectrum of iron —pnictogen (chalcogen) high —
temperature superconductors close to the Fermi level, we discuss the influence of antiferromagneting (AFM)
scattering both for stoichiometric case and the region of possible short —range order AFM fluctuations in doped
compounds. Qualitative picture of the evolution of electronic spectrum and Fermi surfaces (FS) for different
dopings is presented, with the aim of comparison with existing and future ARPES experiments. Both electron
and hole dopings are considered and possible pseudogap behavior connected with partial FS “destruction” is

demonstrated, explaining some recent experiments.

Recent discovery of the new class of iron based
high-temperature superconductors [1] stimulated inten-
sive of experimental and theoretical efforts to understand
its properties (see for the review Refs. [2, 3]). De-
spite already the immense progress in understanding of
these systems, the nature of superconducting pairing and
anomalies in the normal state are still under debate.

Clarification of the structure of electronic spectrum
of new superconductors is crucial for explanation of their
physical properties. Accordingly, since the first days,
different groups have started the detailed band — struc-
ture calculations for all classes of these compounds,
based primarily on different realizations of general LDA
approach. These calculations were primarily performed
for paramagnetic tetragonal FeAs 1111 systems [4—T],
for 122 [8-10], for 111 [10-12] and «a-FeSe [13], fol-
lowed by many similar works by other authors. In
fact, all these calculations demonstrated almost univer-
sal LDA band structure in relatively narrow energy in-
terval (£0.1eV) around the Fermi level, which is of rel-
evance to superconductivity [2].

In this energy interval the electronic spectrum can
be modelled analytically as follows. Three “hole-like”
branches of the spectrum crossing the Fermi level near
the T" point in the Brillouin zone (cf. Fig.la) can be
taken isotropic and modelled by quadratic dispersion:

€i(p) = & —P2/2mi, (1)

where m;, €; (i = 1,2, 3) can be easily determined from
LDA calculations (e.g. for 122 system from the results
of Ref. [8]).

Two “electron-like” branches of the spectrum cross-
ing the Fermi level near M(m,7) point of the reduced
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Fig.1. Qualitative picture from of the band structure in MI'
direction in the reduced Brillouin zone (a) and the relevant
Fermi surfaces (b)

Brillouin zone are anisotropic and produce two elliptic
isoenergetic crossections at the Fermi level (cf. Fig.1b),
one of which is extened in the direction MI', with the
second one extended in the orthogonal direction. Let
us count the momentum from the M point (i.e. replace
p — Q — p) and take one momentum p axis along MT'
direction and other orthogonal to it (Fig.1b). The rel-
evant momentum projections p; and p; are connected
with the usual z, y projections as p1 = (py +p.)/V2,
P2 = (py —p,)/v/2. Consider one of the ellipses, e.g.
those extended along the direction orthogonal to MI'
direction. Electron dispersion along MI' can be mod-
elled by quadratic law €,1(p) = p?/2m4 — 4. Disper-
sion along the orthogonal (to MT') direction is deter-
mined by higher (in energy) branch of the spectrum,
originating from the hybridization of two “bare” dis-
persions (cf. Fig.la), which we also assume quadratic.
Then, neglecting the small hybridization gap, we obtain
ep2(p) = Max(—p?/2mg — e4; p* /2ms — €5). Parameters
my, €4, M5, €5, Mg can be taken from LDA data. Thus,
for anisotropic “electron-like” spectrum we can use the
following model:

729



730 E. Z. Kuchinskii, M. V. Sadovskii

e4(p) = cos®(¢)ep1 (p) + sin’(P)ep2 (p), (2)

where p? = p? + p2, and ¢ is the polar angle with re-
spect to p; axis. This model guarantees correct energy
crossections in direction MI" and orthogonal it, as well as
isotropy of the spectrum in case of €,1(p) = €p2(p). En-
ergy dispersion for the second “electron-like” band e5(p)
is also given by Eq. (2) with the obvious substitution
¢ — w/2 + ¢. Finally, we describe the “electron-like”
bands in our model as:

e4(p) =
» P
—= -2 £ for p2= 2+ 2 < 2
oms  2mo 4 P =piTP2 < Po
- 2 2 2 2 » (3)
b D b
=1 —2——; 4——5e5 for p*> > pj

where p2 = 2(e5 — €4)/(1/ms + 1/my) is the square of
the momentum at the crossing of two “bare” hybridizing
bands.

The qualitative picture of electronic spectrum and
Fermi surfaces is shown in Fig.1. Essentially this kind of
electronic spectra and Fermi surfaces in new supercon-
ductors were qualitatively confirmed by angle resolved
photoemission spectroscopy (ARPES), starting with the
early works [14—-21], followed by many further studies
by the same and other authors. Most of these experi-
ments were performed on single crystals of 122 systems,
while for other compounds good quality single crystals
are up to now just unavailable. Though in qualitative
agreement with the results of LDA calculations, these ex-
periments show rather different results concerning finer
details, such as the precise number of “hole-like” FS
cylinders around the I' point, as well as the topology
of “electron-like” cylinders around the M —point.

In general LDA calculations underestimate the role
of electronic correlations. ARPES experiments show
that these systems apparently belong to the class of
intermediately correlated systems, with correlation in-
duced band narrowing by the factor of two [16]. This
is confirmed by some of LDA+DMFT calculations [22],
though theoretical situation here remains rather contro-
versial. In the following we take correlations into ac-
count by simple rescaling of the energy by the factor of
two as compared with LDA [16].

Undoped FeAs compounds are antiferromagnetically
ordered with AFM vector Q = (0, 7) in extended Bril-
louin zone, corresponding to Q = (m,7) in the reduced
zone [2, 3]. Electron or hole doping suppresses AFM
ordering and induces superconductivity, similar to the
well known situation in cuprates. Recent neutron scat-
tering experiments [23, 24] clearly show that in the sub-
stantial part of the phase diagram of FeAs systems in

normal paramagnetic state rather strong fluctuations of
AFM short-range order persist, as predicted e.g. by the
model of “nearly antiferromagnetic Fermi liquid” [25—
27]. These fluctuations can, in principle, induce the
pseudogap behavior in electronic spectrum, similar to
that observed in cuprates [28].

Effective interaction of electrons with AFM spin fluc-
tuations is determined in this model by dynamic spin
susceptibility characterized by the maximum at scat-
tering vectors close to AFM vector Q = (m, ), which
we assume here to be the same for electron from dif-
ferent bands and for interband scattering. Limiting
ourselves to high enough temperatures we can neglect
the dynamics of AFM fluctuations and consider them
Gaussian [28]. The Green’s function for electrons mov-
ing in the “quenched” Gaussian random field of these
fluctuations can be represented by recurrence “Dyson
equation” shown in Fig.2, which is the direct multiple

A’s(n + 1)
SRR SRS M VR

n n n 1 n
G, G0 Gy Gp'' Gy

i

Fig.2. Recurrence “Dyson equation” for the Green’s func-
tion

bands generalization of the summation procedure, pro-
posed and actively used in Refs. [29-32], taking into
account all Feynman diagrams for electron scattering in
such random field.

Analytically, this “Dyson equation” can be written
as:

G =Gy + GEA’s(n+1) Y Gt > Gr (4)
l

km

where i, j represent band indices, A characterizes the
AFM pseudogap width (of the order of AFM band split-

ting),

1
E —e?(p) + invl'k

(2

0i (Ep) =

(5)

k = £ 1 is an inverse correlation length of AFM short-
range order fluctuations, e?’(p) = ;(p + Q) and v =
— [03(p+ Q)| + |o! (b + Q)] for odd n, while £} (p) =
= gi(p) and v = |[v¥(p)| + |v/(p)| for even n. Ve-
locity projections v¥(p) and v{(p) are determined by
the momentum derivatives of electronic dispersion in the
i-th band ¢;(p). Combinatorial factor s(n) for the case
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Fig.3. Energy bands. Upper panel (a) — “bare” (scaled LDA) bands in paramagnetic state in the absense of AFM fluctuations.
Panel (b) — AFM long-range ordered state with A = 0.05eV. Panel (c) — bands in the pseudogap state induced by AFM
short-range order fluctuations with £ = 10a and A = 0.05eV. All bands are shown with finite “experimental” resolution
v = 0.01eV. Dotted lines show Fermi levels for different dopings used in our calculations of Fermi surfaces below

of Heisenberg AFM fluctuations (spin-fermion model of

Ref. [31]) is given by:

n+2 for odd n
s(n) = (6)

for even n.

w3 w

The physical Green’s function corresponds to n = 0.
Then, after some simple manipulations we may show
that

GY:(Ep)Gy;(Ep)Z(Ep)
1-G)(Ep)S(Ep)
(7)

Gi;(Ep) = GJ;(Ep)di; +

where the physical self-energy

%(Ep) = ="='(Ep) (8)
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is determined from the recurrence procedure (continued
fraction representation):

AZ%s(n)

2 = Gy - ey Y

where Gg (Ep) = >_; Gg;(Ep). As a byproduct of these
general equations we can easily analyze the electronic
spectrum in the case of AFM long-range order, trun-
cating the continuous fraction in Eq. (9) at n = 1 and
taking the limit of kK — 0. The spectral density and
density of states are obviously given by:

A(Bp) = - ImSpG(Ep); N(E) = Y A(B,p).

(10)

We performed calculations for a variety of parame-
ters of the model, using for the spectrum LDA data for
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Fig.4. “ARPES” Fermi surfaces at different doping levels shown by dotted lines in Fig.3: Column 1 — electron doping with
Er =0.02eV, 2 — undoped system with Er = 0, 3 — hole doping with Er = —0.035 eV (hole underdoped system), 4 — optimal
hole doping with Er = —0.085 eV. Upper panel (a) — “bare” FS in paramagnetic state in the absense of AFM fluctuations.
Panel (b) - AFM phase with A =0.05 eV. Panel (c¢) - pseudogap state with £ = 10a and A = 0.05eV

122 from Ref [8], scaled by factor of two to account for
correlations. Below we present results for A = 50 meV,
which is in rough agreement with the estimates of AFM
band splitting from ARPES data [33, 34] and neutron
scattering [35] (varying in the interval 50-100 meV), cor-
relation length of AFM fluctuations £ = 10a (a — lattice
spacing), also in rough agrrement with netron scattering
data [23, 24]. In the following, all momenta are given
in units of inverse lattice spacing, energies in eV. To
make the results comparable with ARPES experiments
we have also introduced effective widening to simulate
finite energy resolution of ARPES replacing £ — E +ivy
and taking v = 10 meV (corresponding to best ARPES
resolution).

In Fig.3 we show “ARPES” energy bands of 122 sys-
tem, revealed by the maps of spectral density, along
main symmetry directions, starting from the case of nor-
mal (paramagnetic) LDA bands, via AFM long-range or-
dered state, to “pseudogapped” state, characterized by

electrons scattered by short-range ordered AFM fluctua-
tions — AFM band splittings transforming to pseudogaps
due to AFM short-range order.

In Fig.4 we show spectral density maps at the Fermi
level for different dopings — from slightly electron doped,
via undoped, to hole underdoped and optimally hole
doped case. These maps essentially produce “ARPES”
Fermi surfaces of 122 system at different dopings. In
fact, the system always remains metallic in a sense
that at every doping we observe “open” Fermi surfaces,
though we also can see rather complicated series of Fermi
surface transformations, with some cylinders being al-
most “destructed” (damped) either by AFM long-range
order, or by short-range order AFM fluctuations. Of
these maps, we identify the last one in the third row
(4c) as corresponding more or less to optimally hole
doped case in satisfactory agreement with ARPES data
e.g. from Refs. [16, 18, 20, 36], while the third one in
the same row (3c) apparently well corresponds to the
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hole underdoped case studied in Ref. [36], demonstrat-
ing the inner hole cylinder rather damped by pseudogap
fluctuations with characteristic wave vector of the or-
der of AFM vector Q. Significant pseudogap forms in
the (partial) density of states on precisely this cylinder,
in agreement with Ref. [36]. In general, the available
ARPES data suffer from rather bad resolution, so that
pseudogap fluctuations can significantly complicate ob-
servation of all FS cylinders and much work is needed
to reveal possible complicated picture of FS transfor-
mations, illustrated in Fig.4. It should be taken into
account that pictures shown in the second row (b) of
Fig.4 are sensible only within the part of the phase di-
agram with AFM long-range order, while the third row
(c) applies to paramagnetic region, where superconduc-
tivity appears at lower temperatures.

Our calculations show, that the pseudogap forms
only in (partial) densities of states, corresponding to
those cylinders strongly affected by short-range AFM
fluctuations, and this is not, in general, “pinned” at the
Fermi level. Pseudogap in the total density of states is
always rather weak, and the problem remains, whether it
is sufficient to explain claims for the pseudogap behavior
observed in some NMR experiments [2, 3].
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02-00021 and Programs of Fundamental Research of the
Russian Academy of Sciences (RAS) “Quantum physics
of condensed matter” (09-II-2-1009) and of the Physics
Division of RAS “Strongly correlated electrons in solid
states” (09-T-2-1011).
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