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Multiplication of spin qubits arises at double resonance in a bichromatic field when the frequency of the
radio-frequency (rf) field is close to that of the Rabi oscillation in the microwave field, provided its frequency
equals the Larmor frequency of the initial qubit. We show that the operational multiphoton transitions of
dressed qubits can be selected by the choice of both the rotating frame and the rf phase. In order to enhance
the precision of dressed qubit operations in the strong-field regime, the counter-rotating component of the rf

field is taken into account.

Theoretical models of quantum computations as-
sume the existence of an ideal two-level quantum sys-
tem (qubit) and the possibility of an exact description
of the qubit’s interaction with external electromagnetic
fields [1]. It is known that the resonant interaction be-
tween electromagnetic radiation and qubit induces Rabi
oscillations, which are the basis for quantum operations.
The Rabi frequency wg is defined by the amplitude of
the electromagnetic field and usually is much smaller
than the energy difference wg (in frequency units) be-
tween the qubit’s states. The “dressing” of qubit by
the electromagnetic field splits each level into two giv-
ing rise to two new qubits with energy difference wg.
The spectrum of the multilevel “qubit + field” system
consists of three lines at the frequencies wy and wg + wg
(the Mollow triplet [2]). The second low-frequency elec-
tromagnetic field with the frequency close to the Rabi
frequency wpg could induce an additional Rabi oscilla-
tion on dressed states of new qubits. These qubits are
attracting interest because their coherence time is longer
than that of the initial qubit [3—5]. The results of stud-
ies of qubits dressed by bichromatic radiation formed by
fields with strongly different frequencies are important
for a wide range of physical objects, including, among
others, nuclear and electron spins, double-well quantum
dots, flux and charge qubits in superconducting systems.
In NMR [6,7], EPR [5,8,9] and optical resonance [10]
such investigations are used in the development of line-
narrowing methods.

In this letter, we describe the multiplication of spin
qubits at double resonance in a bichromatic field with
strongly different frequencies. We then show that the op-
erational multiphoton transitions of dressed qubits can
be selected by the choice of both the rotating frame and
the phase of the low-frequency field. Two important ex-
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amples of such transitions in the rotating and doubly
rotating frames are presented.

Let an electron spin qubit be in three fields: a mi-
crowave (mw) one directed along the z axis of the labo-
ratory frame, a radio-frequency (rf) one directed along
the z axis, and a static magnetic one also directed along
the z axis. The Hamiltonian of the qubit in these fields
can be written as follows:

H=Ho+ H, (t)+ H (). (1)

Here Hy = wps? is the Hamiltonian of the Zeeman en-
ergy of a spin in the static magnetic field By, where
wo = 7By, and « is the electron gyromagnetic ratio.
Moreover, H (t) = 2w cos(wt+ ¢)s” and H)(t) =
= 2wy cos (wr st + 1) s* are the Hamiltonians of the spin
interaction with linearly polarized mw and rf fields, re-
spectively. B; and B, w and wys, and ¢ and 9 denote
the respective amplitudes, frequencies, and phases of the
mw and rf fields. Finally, w; = yB; and ws = yB» stand
for the Rabi frequencies, whereas s*'¥:# are the compo-
nents of the spin operator.

The evolution of the system with the Hamiltonian
(1) is described by the Liouville equation for the density
matrix p:

.0p

i = [H, ) (2)

(we set the Planck constant # = 1). We perform the
transformation (p — p1 = U1+pU1, U, = e”'“’tsz) to
the singly rotating frame, which rotates with frequency
w around the z axis of the laboratory frame. In this
frame, Eq. (2) turns into:

;9n

ot

where Hy, = Uy HU; = As* + (w1/2)(st + 57) +
+ 2wy cos(wpst + 9P)s* and A = wy — w. The mw

= [H1,P1], (3)
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phase ¢ = 0 and the counter-rotating component of
the mw field is neglected. We also assume that the ex-
act resonance condition is fulfilled A = 0, and that w;,
wrf > wy. Upon rotation of the frame around the y axis
by the angle of 7/2 (p1 = pz = Uy p1Us, Uy = e~/
where s¥ = (s — s7)/2i), we obtain:

(9p2
H. 4
Bt [ 2,P2]a ( )
where Hy = U2+H1U2 = w18 — wy cos(wpst + ¥)(sT
+s7).

Now, we pass to the interaction representation by
choosing the frame rotating with frequency w; around
the z axis (p2 — p3 = Uy p2Us, Uz = e~ *1%%7), In this
frame we have:

ZW [H3,P3] (5)
where
H3:U3+H2U3:—(w2/2)s+ (eiétefiz/; + ei(2wpf+5)tei'(/)) _
—he, § = w1 — wpy, and |§] € wi, wpy in our

case. Rapidly oscillating (e*?2¢r7%) terms in the Hamil-

tonian Hj can be eliminated by the Krylov-Bogoliubov-
Mitropolsky method [5,11,12]. Averaging over the pe-
riod 27 /wyy, we obtain the following effective Hamil-
tonian up to the second order in ws /wyy:

Hs - Hep = HY + HY). (6)

In the above equation we have put:
(H3(t)) = —(w2/2)(s"

He(:f) = ee ¥ 4 h.e.),

13 = ([ dr (Ea(n) - (#@)),

Hs(t)])

. > denotes time averaging: (A(t)) =

= ABSSZ.

The symbol <.
=7 fo t)dt, where T =27 /wys and Aps ~ w3 /4w,y
is the Bloch Siegert-like frequency shift.

After the canonical transformation p3 — pg =
= U, psUs, Uy = e H08¥)5" the equation
Op3
i—— = [H. ) 7
i~ [H,7,p5) (7
is transformed into
3P4
H 8
Bt = [Hy, p4], (8)

where H; = Uj
+s7).

HetfUs = (6 + Aps)s® — (w2/2) (st +
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The diagonalization of the Hamiltonian H4 by means

of the rotation operator Us = e~ %" (p5 — ps =
= U paUs, Hs = U HyUs) yields:
(9p5
H 9
iy = [Hs, ps]. 9)

Here Hs = es*, ¢ = /(w1 —wrs + Aps)? +w? is the
frequency of the Rabi oscillations between the spin states
dressed simultaneously by the mw and rf field while
sin = —ws /e, cos€ = (w1 —wry + Apg)/e.

By using Eqgs. (2)—(9), the density matrix in the lab-
oratory frame (LF) can be written as:

p(t) = UrUxUsUsUse ™75t p5 (0)e 5L U U US US U,
(10)

where

ps(0) =

= USUS(0)U5 (0)U; U (0)p(0)UsUs(0)Us (0)U2U1 (0),
(11)

and U, (0) = 1, U3(0) = 1, Uy (0) = e~ ¥*".

Initially, the qubit is in the ground state and p(0) =
= 1/2 — s*. The absorption signal v(t) = Sp{p(t)(s* —
— 87)}/2i in the laboratory frame can be derived from
Egs. (10) and (11):

v(t) = ((1p(t)|2) — 2lp(t)[1)) /2i =
= (1/2) sin & cos € cos 1 sin wi+
+(1/16){4 sin € sin g[cos(w + &)t — cos(w — &)t]+
—4sin € cos € cos[sin(w — €)t + sin(w + €)t]+
+2sin” ¢ sin 2¢p[cos(w + wypg)t + cos(w — wyp)t]+
+ ((cos§ —1)% + (cos* & — 1) cos 2¢) x
X [Sin(w + wpg — &)t — sin(w — wpy + €)t]+
+ (cos® € — 1) sin 2¢x

x[cos(w — wps + €)t + cos(w + wpp — €)t]+

+ ((cosf +1)® + (cos® € — 1) cos 21/)) X
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Fig.1. Energy-level diagram of a qubit and transitions created by a bichromatic field at double resonance (wo = w, w1 = wrys)

x[sin(w + wpy + €)t — sin(w — wpp — €)t]+
+ (cos? € — 1) sin 2 x

(12)

The resonant interaction between the mw field and
the qubit creates its dressed states and two new qubits
with energy splitting equal to the Rabi frequency wy,
as shown in Fig.1. The rf field with the frequency w,¢,
which is close to the Rabi frequency w; of the new qubits,
“dresses” these qubits, giving rise to four qubits with the
energy splitting e. Allowed transitions between states of
these qubits afford nine spectral lines observed in the
laboratory frame.

Figs.2 and 3 show the time evolution of absorption
signals and their Fourier spectra of dressed qubits under
conditions typical for EPR.

For the rf phase 1) = 0, three triplets with the inten-
sive central lines at w — wy, w and w + w; are formed
(Fig.3a). The less intensive sidebands have the frequen-
cies *e relative to each of the central lines. For the rf
phase ¢ = ©/2, the central lines in the triplets vanish
(Fig.3b), each triplet turning into an doublet. When the
rf phase is random, averaging over a sufficiently large
number of experiments (at the uniform distribution of
the phase in the interval from 0 to 27) leads to a com-
plete removal of the central triplet. The differences of
line’s intensities in the two residual triplets (w — wy,
w—wy e and w+ wi, w+ w; £ &) become smaller
(Fig.3c).

x[cos(w — wpp — €)t + cos(w + wrp + €)t]}.

There is the possibility of selecting the observed
transitions of four qubits by employing the rotating
frame. In the singly rotating frame (SRF'), the absorp-
tion signal described by the density matrix p;(t) (Eq.
(4)) can by written as

vy (t) = (1/8) [2sin® € (sinw, st + sin (w,st + 2¢9)) +
+ (1 + cos€)’sin (wrp +€) t—
— (1 —cos?¢) sin ((wpy +&)t +2¢0) +
+ (1= cos¢)’sin (wpp —€) t—

— (1 —cos? &) sin ((wyr — &)t + 2¢)] .
(13)

Fig.4 shows the Fourier spectra of signals given by
Eq. (13) under the same conditions as in Figs.2 and 3.
For the random rf phase, the absorption signal has three
comparable oscillating components with frequencies wy
and wy + y/w3 + A% (Fig.4c). For the rf phase ¢ =0,
the sidebands are smaller than those at the random rf
phase by the factor Aps/+/w3 + A% (Fig.4a). When
we use ¢ = /2, the component with frequency w;
vanishes and the sidebands are comparable to those
at the random rf phase (Fig.4b). Note that the high-
frequency sideband is always more intensive than the
low-frequency one.

Upon the rotating wave approximation (Aggs — 0),
it follows from Eq. (13) that for ¢» = 0 only the compo-
nent with frequency w; remains. At the same time, for
both ¢ = 7/2 and the random rf phase, the intensities of
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v(?) (arb. units)

¢ (us)

Fig.2. Time evolution of the absorption signals in the lab-
oratory (solid line), singly rotating (dot line) and doubly
rotating (dash line) frames. The signals were obtained for
the following parameters of the bichromatic field: w = wyo,
w1 = wpy = 2w1.0 MHz, w = 270.24 MHz, using the
exponential decay function with T = 16 us

the sidebands are equal. The equalization of sidebands
can be used to indicate the validity of the rotating wave
approximation. On the contrary, their asymmetry re-
veals the effect of the counter-rotating component of the
rf field. Such asymmetry was observed in the dressed
Rabi oscillations using the EPR experiment with ran-
dom rf phase [5].

Note that, upon the resonant monochromatic inter-
action, the Mollow triplet is formed by the transitions
between the dressed states of the ground and excited
levels of the initial qubit. Similarly, at the doubly res-
onant bichromatic interaction, the triplet in the singly
rotating frame is formed by the transitions between the
10 [Iucema B ARITD
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Fig.3. Fourier spectra of the absorption signals in the lab-
oratory frame shown in Fig. 2 by a solid line

split states of both the ground and excited levels of the
initial qubit (Fig.1).

We now provide the expression for the absorption
signal in the frame described by the density matrix
ps(t) = e Hstps(0)eifst where ps5(0) is given by Eq.
(11). In this doubly rotating frame (DRF), the absorp-
tion signal can be written as follows:

vs(t) = ((1lps(£)[2) — (2lps(8)[1)) /2i =

= (cos& cosy sinet — siny coset) /2. (14)

According to Eq. (14), the absorption signal in the
doubly rotating frame is caused by the transitions be-
tween spin states dressed simultaneously by the mw and
rf fields. At the exact resonance (w; = w,y), the signal
for ¢ = 0 is smaller than the signal for ¢» = 7/2 by the
factor Apg/\/w3 + A%s. If Aps — 0, the signal for
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Fig.4. Fourier spectra of the absorption signals in the singly
rotating frame shown in Fig.2 by a dot line

¥ = 0 disappears. In this case, for ¢ = 7/2, the absorp-
tion signal oscillates with the Rabi frequency ws. So,
for ¢» = 0, the absorption signal vs is fully due to the
counter-rotating component of the rf field and its am-
plitude is proportional to the value of the Bloch—Siegert
shift Apg.

In conclusion, we have studied the evolution of
spin qubits at the double resonance (wp = w, w; =
= wpy) with a bichromatic field, consisting of trans-
verse (high-frequency) and longitudinal (low-frequency)
components. We have found that the double ”dressing”
of an initial qubit by the bichromatic field forms four
new qubits with a smaller energy splitting, giving rise to
multiphoton transitions. In the laboratory frame, three
triplets correspond to the transitions between states of
these qubits. The transition amplitudes depend strongly
on the phase of the low-frequency field. The counter-
rotating component of the low-frequency field causes the
asymmetry of sidebands in the triplets. After taking
into account this component, the errors in operations
with qubits on dressed states in the strong-field regime
are minimized. The types of operational multiphoton
transitions can be selected by the choice of the rotat-
ing frame: one triplet, (w1, w1 + €), can be observed in
the singly rotating frame, and only the transition at the
frequency e is realized in the doubly rotating frame.
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