
Pis'ma v ZhETF, vol. 91, iss. 12, pp. 750 { 754 c 2010 June 25Multiplication of qubits in a doubly resonant bichromatic �eldA.P. Saiko1), R. Fedaruk+Scienti�c-Practical Materials Research Centre NAS of Belarus, Minsk, Belarus+Institute of Physics, University of Szczecin, 70-451 Szczecin, PolandSubmitted 21 April 2010Multiplication of spin qubits arises at double resonance in a bichromatic �eld when the frequency of theradio-frequency (rf) �eld is close to that of the Rabi oscillation in the microwave �eld, provided its frequencyequals the Larmor frequency of the initial qubit. We show that the operational multiphoton transitions ofdressed qubits can be selected by the choice of both the rotating frame and the rf phase. In order to enhancethe precision of dressed qubit operations in the strong-�eld regime, the counter-rotating component of the rf�eld is taken into account.Theoretical models of quantum computations as-sume the existence of an ideal two-level quantum sys-tem (qubit) and the possibility of an exact descriptionof the qubit's interaction with external electromagnetic�elds [1]. It is known that the resonant interaction be-tween electromagnetic radiation and qubit induces Rabioscillations, which are the basis for quantum operations.The Rabi frequency !R is de�ned by the amplitude ofthe electromagnetic �eld and usually is much smallerthan the energy di�erence !0 (in frequency units) be-tween the qubit's states. The \dressing" of qubit bythe electromagnetic �eld splits each level into two giv-ing rise to two new qubits with energy di�erence !R.The spectrum of the multilevel \qubit + �eld" systemconsists of three lines at the frequencies !0 and !0�!R(the Mollow triplet [2]). The second low-frequency elec-tromagnetic �eld with the frequency close to the Rabifrequency !R could induce an additional Rabi oscilla-tion on dressed states of new qubits. These qubits areattracting interest because their coherence time is longerthan that of the initial qubit [3 { 5]. The results of stud-ies of qubits dressed by bichromatic radiation formed by�elds with strongly di�erent frequencies are importantfor a wide range of physical objects, including, amongothers, nuclear and electron spins, double-well quantumdots, ux and charge qubits in superconducting systems.In NMR [6, 7], EPR [5, 8, 9] and optical resonance [10]such investigations are used in the development of line-narrowing methods.In this letter, we describe the multiplication of spinqubits at double resonance in a bichromatic �eld withstrongly di�erent frequencies. We then show that the op-erational multiphoton transitions of dressed qubits canbe selected by the choice of both the rotating frame andthe phase of the low-frequency �eld. Two important ex-1)e-mail: saiko@ifttp.bas-net.by

amples of such transitions in the rotating and doublyrotating frames are presented.Let an electron spin qubit be in three �elds: a mi-crowave (mw) one directed along the x axis of the labo-ratory frame, a radio-frequency (rf) one directed alongthe z axis, and a static magnetic one also directed alongthe z axis. The Hamiltonian of the qubit in these �eldscan be written as follows:H = H0 +H? (t) +Hk (t) : (1)Here H0 = !0sz is the Hamiltonian of the Zeeman en-ergy of a spin in the static magnetic �eld B0, where!0 = B0, and  is the electron gyromagnetic ratio.Moreover, H? (t) = 2!1 cos (!t+ �) sx and Hk (t) == 2!2 cos (!rf t+  ) sz are the Hamiltonians of the spininteraction with linearly polarized mw and rf �elds, re-spectively. B1 and B2, ! and !rf , and ' and  denotethe respective amplitudes, frequencies, and phases of themw and rf �elds. Finally, !1 = B1 and !2 = B2 standfor the Rabi frequencies, whereas sx;y; z are the compo-nents of the spin operator.The evolution of the system with the Hamiltonian(1) is described by the Liouville equation for the densitymatrix �: i@�@t = [H; �] (2)(we set the Planck constant ~ = 1). We perform thetransformation (� ! �1 = U+1 �U1, U1 = e�i!tsz ) tothe singly rotating frame, which rotates with frequency! around the z axis of the laboratory frame. In thisframe, Eq. (2) turns into:i@�1@t = [H1; �1]; (3)where H1 = U+1 HU1 = �sz + (!1=2)(s+ + s�) ++ 2!2 cos(!rf t +  )sz and � = !0 � !. The mw750 �¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 11 { 12 2010



Multiplication of qubits in a doubly resonant bichromatic �eld 751phase ' = 0 and the counter-rotating component ofthe mw �eld is neglected. We also assume that the ex-act resonance condition is ful�lled � = 0, and that !1,!rf � !2. Upon rotation of the frame around the y axisby the angle of �=2 (�1 ! �2 = U+2 �1U2, U2 = e�i�sy=2,where sy = (s+ � s�)=2i), we obtain:i@�2@t = [H2; �2]; (4)where H2 = U+2 H1U2 = !1sz � !2 cos(!rf t +  )(s+ ++ s�).Now, we pass to the interaction representation bychoosing the frame rotating with frequency !1 aroundthe z axis (�2 ! �3 = U+3 �2U3, U3 = e�i!1tsz ). In thisframe we have: i@�3@t = [H3; �3]; (5)whereH3=U+3 H2U3=�(!2=2)s+ �ei�te�i + ei(2!rf+�)tei � �� h:c:, � = !1 � !rf , and j�j � !1; !rf in ourcase. Rapidly oscillating (e�i2!rf t) terms in the Hamil-tonianH3 can be eliminated by the Krylov{Bogoliubov{Mitropolsky method [5, 11, 12]. Averaging over the pe-riod 2�=!rf , we obtain the following e�ective Hamil-tonian up to the second order in !2=!rf :H3 ! He� = H(1)e� +H(2)eff : (6)In the above equation we have put:H(1)e� = hH3(t)i = �(!2=2)(s+ei�te�i + h.c.);H(2)e� = i2 h[Z t d� (H3(�)� hH3(�)i) ;H3(t)]i = �BSsz:The symbol < ::: > denotes time averaging: hA(t)i == 1T R T0 A(t)dt, where T = 2�=!rf and �BS � !22=4!rfis the Bloch{Siegert-like frequency shift.After the canonical transformation �3 ! �4 == U+4 �3U4, U4 = e�i(�t� )sz , the equationi@�3@t = [Heff ; �3] (7)is transformed into i@�4@t = [H4; �4]; (8)where H4 = U+4 HeffU4 = (� + �BS)sz � (!2=2)(s+ ++ s�).

The diagonalization of the HamiltonianH4 by meansof the rotation operator U5 = e�i�sy (�5 ! �5 == U+5 �4U5, H5 = U+5 H4U5) yields:i@�5@t = [H5; �5]: (9)Here H5 = "sz, " = p(!1 � !rf +�BS)2 + !22 is thefrequency of the Rabi oscillations between the spin statesdressed simultaneously by the mw and rf �eld whilesin � = �!2=", cos � = (!1 � !rf +�BS)=".By using Eqs. (2){(9), the density matrix in the lab-oratory frame (LF) can be written as:�(t) = U1U2U3U4U5e�iH5t�5(0)eiH5tU+5 U+4 U+3 U+2 U+1 ;(10)where �5(0) == U+5 U+4 (0)U+3 (0)U+2 U+1 (0)�(0)U5U4(0)U3(0)U2U1(0);(11)and U1(0) = 1, U3(0) = 1, U4(0) = e�i sz .Initially, the qubit is in the ground state and �(0) == 1=2� sz. The absorption signal �(t) = Spf�(t)(s+ �� s�)g=2i in the laboratory frame can be derived fromEqs. (10) and (11):�(t) = (h1j�(t)j2i � h2j�(t)j1i) =2i == (1=2) sin � cos � cos sin!t++(1=16)f4 sin� sin [cos(! + ")t� cos(! � ")t]+�4 sin � cos � cos [sin(! � ")t+ sin(! + ")t]++2 sin2 � sin 2 [cos(! + !rf )t+ cos(! � !rf )t]++�(cos � � 1)2 + �cos2 � � 1� cos 2 ���[sin(! + !rf � ")t� sin(! � !rf + ")t]++ �cos2 � � 1� sin 2 ��[cos(! � !rf + ")t+ cos(! + !rf � ")t]++�(cos � + 1)2 + �cos2 � � 1� cos 2 ���¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 11 { 12 2010
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Fig.1. Energy-level diagram of a qubit and transitions created by a bichromatic �eld at double resonance (!0 = !, !1 = !rf )�[sin(! + !rf + ")t� sin(! � !rf � ")t]++ �cos2 � � 1� sin 2 ��[cos(! � !rf � ")t+ cos(! + !rf + ")t]g: (12)The resonant interaction between the mw �eld andthe qubit creates its dressed states and two new qubitswith energy splitting equal to the Rabi frequency !1,as shown in Fig.1. The rf �eld with the frequency !rf ,which is close to the Rabi frequency !1 of the new qubits,\dresses" these qubits, giving rise to four qubits with theenergy splitting �. Allowed transitions between states ofthese qubits a�ord nine spectral lines observed in thelaboratory frame.Figs.2 and 3 show the time evolution of absorptionsignals and their Fourier spectra of dressed qubits underconditions typical for EPR.For the rf phase  = 0, three triplets with the inten-sive central lines at ! � !1, ! and ! + !1 are formed(Fig.3a). The less intensive sidebands have the frequen-cies �" relative to each of the central lines. For the rfphase  = �=2, the central lines in the triplets vanish(Fig.3b), each triplet turning into an doublet. When therf phase is random, averaging over a su�ciently largenumber of experiments (at the uniform distribution ofthe phase in the interval from 0 to 2�) leads to a com-plete removal of the central triplet. The di�erences ofline's intensities in the two residual triplets (! � !1,! � !1 � " and ! + !1, ! + !1 � ") become smaller(Fig.3c).

There is the possibility of selecting the observedtransitions of four qubits by employing the rotatingframe. In the singly rotating frame (SRF), the absorp-tion signal described by the density matrix �1(t) (Eq.(4)) can by written as�1 (t) = (1=8) �2 sin2 � (sin!rf t+ sin (!rf t+ 2 ))++ (1 + cos �)2 sin (!rf + ") t�� �1� cos2 �� sin ((!rf + ") t+ 2 )++ (1� cos �)2 sin (!rf � ") t�� �1� cos2 �� sin ((!rf � ") t+ 2 )� : (13)Fig.4 shows the Fourier spectra of signals given byEq. (13) under the same conditions as in Figs.2 and 3.For the random rf phase, the absorption signal has threecomparable oscillating components with frequencies !1and !1 �p!22 +�2BS (Fig.4c). For the rf phase  = 0,the sidebands are smaller than those at the random rfphase by the factor �BS=p!22 +�2BS (Fig.4a). Whenwe use  = �=2, the component with frequency !1vanishes and the sidebands are comparable to thoseat the random rf phase (Fig.4b). Note that the high-frequency sideband is always more intensive than thelow-frequency one.Upon the rotating wave approximation (�BS ! 0),it follows from Eq. (13) that for  = 0 only the compo-nent with frequency !1 remains. At the same time, forboth  = �=2 and the random rf phase, the intensities of�¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 11 { 12 2010
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Fig.2. Time evolution of the absorption signals in the lab-oratory (solid line), singly rotating (dot line) and doublyrotating (dash line) frames. The signals were obtained forthe following parameters of the bichromatic �eld: ! = !0,!1 = !rf = 2�1.0 MHz, !2 = 2�0.24 MHz, using theexponential decay function with T = 16 �sthe sidebands are equal. The equalization of sidebandscan be used to indicate the validity of the rotating waveapproximation. On the contrary, their asymmetry re-veals the e�ect of the counter-rotating component of therf �eld. Such asymmetry was observed in the dressedRabi oscillations using the EPR experiment with ran-dom rf phase [5].Note that, upon the resonant monochromatic inter-action, the Mollow triplet is formed by the transitionsbetween the dressed states of the ground and excitedlevels of the initial qubit. Similarly, at the doubly res-onant bichromatic interaction, the triplet in the singlyrotating frame is formed by the transitions between the

0

0

1

1

2

2

y = 0

y p= /2

(a)

(b)

w    w– 1

w w– 1 – e

w w– 1 – e

w w– 1 + e

w w– 1 + e

w w+ 1 + e

w w+ 1 + e

w w+ 1 – e

w w+ 1 – e

w w+ 1

w e+

w e+

w    e–

w    e–

w

0

1

2 y is random ( )ñ

w w– 1 – e
w w– 1 + e w w+ 1 + ew w+ 1 – e

w    w– 1 w w+ 1

998 999 1000 1001 1002

Frequency  (MHz)

A
m

p
li

tu
d
e 

 (
ar

b
. 
u
n
it

s)

Fig.3. Fourier spectra of the absorption signals in the lab-oratory frame shown in Fig. 2 by a solid linesplit states of both the ground and excited levels of theinitial qubit (Fig.1).We now provide the expression for the absorptionsignal in the frame described by the density matrix�5(t) = e�iH5t�5(0)eiH5t, where �5(0) is given by Eq.(11). In this doubly rotating frame (DRF), the absorp-tion signal can be written as follows:�5(t) = (h1j�5(t)j2i � h2j�5(t)j1i) =2i == (cos � cos sin "t� sin cos "t) =2: (14)According to Eq. (14), the absorption signal in thedoubly rotating frame is caused by the transitions be-tween spin states dressed simultaneously by the mw andrf �elds. At the exact resonance (!1 = !rf ), the signalfor  = 0 is smaller than the signal for  = �=2 by thefactor �BS=p!22 +�2BS . If �BS ! 0, the signal for10 �¨±¼¬  ¢ ���� ²®¬ 91 ¢»¯. 11 { 12 2010
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Fig.4. Fourier spectra of the absorption signals in the singlyrotating frame shown in Fig.2 by a dot line = 0 disappears. In this case, for  = �=2, the absorp-tion signal oscillates with the Rabi frequency !2. So,for  = 0, the absorption signal �5 is fully due to thecounter-rotating component of the rf �eld and its am-plitude is proportional to the value of the Bloch{Siegertshift �BS .

In conclusion, we have studied the evolution ofspin qubits at the double resonance (!0 = !, !1 == !rf ) with a bichromatic �eld, consisting of trans-verse (high-frequency) and longitudinal (low-frequency)components. We have found that the double "dressing"of an initial qubit by the bichromatic �eld forms fournew qubits with a smaller energy splitting, giving rise tomultiphoton transitions. In the laboratory frame, threetriplets correspond to the transitions between states ofthese qubits. The transition amplitudes depend stronglyon the phase of the low-frequency �eld. The counter-rotating component of the low-frequency �eld causes theasymmetry of sidebands in the triplets. After takinginto account this component, the errors in operationswith qubits on dressed states in the strong-�eld regimeare minimized. The types of operational multiphotontransitions can be selected by the choice of the rotat-ing frame: one triplet, (!1, !1 � "), can be observed inthe singly rotating frame, and only the transition at thefrequency " is realized in the doubly rotating frame.1. M. de Belas, Introduction to Quantum Information andQuantum Computation, Cambridge University Press,Cambridge, U.K., 2006.2. B.R. Mollow, Phys. Rev. 188, 1969 (1969).3. Ya. S. Greenberg, E. Il'ichev, and A. Izmalkov, Euro-phys. Lett. 72, 880 (2005).4. Ya. S. Greenberg, Phys. Rev. B 76, 104520 (2007).5. A.P. Saiko and G.G. Fedoruk, JETP Lett. 87, 128(2008).6. A.G. Red�eld, Phys. Rev. 98, 1787 (1955).7. H. Hatanaka, M. Sugiyama, and N. Tabuchi, J. Magn.Res. 165, 293 (2003).8. G. Jeschke, Chem. Phys. Lett. 301, 524 (1999).9. G.G. Fedoruk, Phys. Solid State 46, 1631 (2004).10. Y. Prior, J. A. Kash, and E. L. Hahn, Phys. Rev. A 18,2603 (1978).11. A.P. Saiko, G. G. Fedoruk, and S.A. Markevich, JETP105, 893 (2007).12. A.P. Saiko, Theor. Math. Phys. 161, 1567 (2009).
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