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Compensation behaviors, magnetic susceptibilities and the phase diagrams of the ternary system of the
type ABC consisting of Ising spins o = 1/2, § = 3/2 and m = 5/2 in the presence of a single-ion anisotropy
are studied on the Bethe lattice within the framework of the exact recursion relations. Both ferromagnetic and
antiferromagnetic exchange interactions are considered. The exact expressions for sublattice magnetizations
and magnetic susceptibilities are obtained, and then thermal behaviors of the sublattice magnetizations, total
magnetization, magnetic sublattice susceptibilities and total susceptibility are investigated. We find that the
system only undergoes a second order phase transition for the different and same bilinear nearest-neighbor
exchange interaction parameters, but displays compensation behaviors for only different bilinear interaction
parameters. We also present the phase diagrams for the different and same bilinear nearest-neighbor exchange
interaction parameters. A comparison is made with the other ternary system of the type ABC consisting of

different spin values.

During the last two decades, the ternary system ABC
corresponding to the Prussian blue analogs, which are
the prime examples of molecular-based magnets, has
been intensively studied experimentally and theoreti-
cally (see [1-3] and references therein). These materials
have interesting magnetic properties such as the photoin-
duced magnetization effect [4], the tuning of the color of
magnetic thin film [5,6], inverting magnetic hysteresis
loop [7], a charge-transfer-induced spin transitions [8 -
10], and hydrogen storage capacity [11]. These materials
may also exhibit compensation temperatures where the
total magnetization vanishes below the critical tempera-
ture. The existence of compensation temperatures is of
great technological importance since at this point only
a small driving field is required to change the sign of the
total magnetization. This property is very useful in ther-
momagnetic recording, electronic and computer tech-
nologies [12,13]. Many more experimental works have
been done about Prussian blue analogs (see [14—18] and
references therein). On the other hand, the ternary al-
loy AB,Ci_, composed of Prussian blue analogs has
been also studied theoretically. For example, the mag-
netic properties of a mixed ferro-ferrimagnetic ternary
system of the type ABC consisting of Ising spins 1/2,
1, 3/2 were studied by the use of a mean-field theory
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(MFT) based on Bogoliubov inequality for the Gibbs
free energy [19] and the effective-field theory (EFT) [20,
21]. Recently, the critical behavior of this mixed ternary
system were also investigated on the Bethe lattice by
using the exact recursion relations for the same [22]
and different [23] bilinear nearest-neighbor exchange in-
teraction parameters. The magnetic properties of the
ternary system consisting of spins 1, 3/2, 5/2 were stud-
ied within the MFT [24], the MFT based on Bogoliubov
inequality for the Gibbs free energy [25—27|, the EFT
[28] and the Monte Carlo (MC) simulation [29]. The
ground-state phase diagrams of the AB,C;_, ternary
alloy cons isting of Ising spins 3/2, 1, and 5/2 in the
presence of single-ion anisotropy have also constructed
[30]. The mixed ferro-ferrimagnetic ternary system with
Ising spins 1/2, 1, 5/2 was used to study the spin fluc-
tuation effect on the appearance of plural compensation
temperatures by the combination of molecular-field ap-
proximation, decorated-iteration transformation and the
MC simulation [31]. The magnetic properties (phase di-
agram, magnetization, compensation temperature, and
magnetic susceptibility) of the AB,C;_, ternary alloy
consisting of spins 3/2, 2, 5/2 were investigated by the
use of the MFT based on Bogoliubov inequality for the
Gibbs free energy [32-34] and the MC simulations [35].

Thus, although considerable progress has been made
in understanding the magnetic properties of the ABC
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ternary system consisting of half-integer and integer spin
variables, only one work about the magnetic properties
of the ternary system with only the half-integer spin vari-
ables, best of our knowledge, only one work has been
studied on an anisotropically decorated square lattice
by Canové et. al [36]. In this paper, we are going to
study compensation temperatures, magnetic susceptibil-
ities and the phase diagrams of the ternary system of the
type ABC consisting of consisting of only half-integer
Ising spins, namely 6=1/2, § = 3/2 and m = 5/2, in the
presence of a single-ion anisotropy on the Bethe lattice
within the framework of the exact recursion relations.
Both ferromagnetic and antiferromagnetic exchange in-
teractions are considered. The exact expressions for the
sublattice magnetizations and magnetic susceptibilities
are obtained, and thermal behaviors of the sublattice
magnetizations, total magnetization, magnetic sublattice
susceptibilities and total susceptibility are investigated.
We also present the phase diagrams including the com-
pensation behaviors for different and same bilinear in-
teraction parameters. We find that this system exhibits
very different magnetic properties as would be seen in
the upcoming sections. Finally, it is worthwhile men-
tioning that it is now widely recognize that in many
cases solutions of spin systems on Bethe or generalized
Bethe lattices are qualitatively better approximations for
the regular lattices than the solutions obtained by con-
ventional mean-field theories, because of the presence of
correlations in the former and the lack of correlations in
the latter [37]. One should also mention that the Bethe
lattice consideration has some limitations, such as it pre-
dicts a higher transition temperature than a regular lat-
tice and it is not reliable for predicting critical exponents
[37].

The Hamiltonian for the mixed Ising model of the
type ABC ternary system consisting of half-integer spins
o =1/2,S =3/2 and m = 5/2 on the Bethe lattice is
given by

H=-J Za'iSj —Js Zsjmk -
(i5) (ik)

—J3Zf7imk+A (ZS?-I-Zmi) -
j k

(ik)
—h<20i+zsj+zmk>a (1)
i j k

where each 0;,5; and m;, located at the sites 7, 7 and
k are a spin-1/2 with the two discrete values +1/2, a
spin-3/2 with the four discrete values +£3/2 and +1/2,
and a spin-5/2 with the six discrete values £5/2, +3/2
and +1/2, respectively. Ji, Jo and J3 are the bilin-
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ear nearest-neighbor exchange interactions and we con-
sider both ferromagnetic (J3>0 ) and antiferromagnetic
(J2<0 ) and (J1<0 ) exchange interactions. A and h
are the single-ion anisotropy and external magnetic field,
respectively. The first three summations are performed
for nearest-neighbor (NN) spin pairs, the last sums run
over all the spin-3/2 and spin-5/2 sites. In this ternary
system case, we arrange the Bethe lattice such that the
central spin is spin-1/2, op; the second generation is
spin-3/2, Sp; the third generation is a spin-5/2, mg; the
fourth generation is again spin-1/2, o7; the fifth genera-
tion is again spin-3/2, Si; the sixth generation is again
spin-5/2, my; so on to infinity, as seen in Fig.1 for ¢ =
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Fig.1. Bethe lattice, or regular tree, of coordination num-
bers (¢ = 3) for the ternary system consisting of spins o =
1/2, S = 3/2, and m = 5/2. The Bethe lattice is arranged
such that the central spin is spin-1/2, oo; the second gen-
eration is spin-3/2, So; the third generation is a spin-5/2,
mo; the fourth generation is again spin-1/2, o1; the fifth
generation is again spin-3/2, Si; the sixth generation is
again spin-5/2, m1; so on to infinity

3, respectively. It is seen from the Fig.1 that the cen-
tral spin has ¢ NN, i.e., the coordination number, which
forms the second generation spins. Each spin in the sec-
ond generation is joined to (g-1) NN’s; hence, in total,
the second generation has ¢(g-1) NN spins that forms
the third generation spins and so on to infinity.

The partition function is the main ingredient to ob-
tain a formulation in terms of the recursion relations.
Using the definition, the partition function of the system
is given by

7*
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Z= Y exp[-BH]|=

{o,S,m}

= Y exp [B<J120i5j+

{0, S,m} (23)

+J225jmk + J3ZO’imk> ] +

(3k) (ik)

+ Z exp —ﬂA(ZS]?+Zm2>
j %

{0'7 S? m}

+ > exp lﬁh(?ai+zjjsj+;mk>

{0'7 S? m}

_|_

» (2)

where the summation is over all spin sets. If we cut
the Bethe lattice in some central point deep inside with
a spin oy, that is a spin-1/2, it splits up to ¢ identical
branches in which each of these branches is a rooted tree
at the central spin og. Therefore, the partition function
for the central site on the Bethe lattice can be written as

Z = Z exp [Bh o] X [gn (70]S0, mo)]?, (3)
{00}

where o is the central spin value on the lattice, and
is the partition function of an individual branch and the
suffix n represents the fact that the sub-tree has n-shells,
i.e., n steps from the root to the boundary sites. Each
branch can be cut on the site which is the nearest to
the central point. Therefore, is written in terms of the
summation over spin set as

gn (90]S0,m0) =
= exp [B(J100So — ASF + h Sp)] x
{So}
e (4)
Advancing along the any branch, we get a site that next-

nearest to the central spin, hence g,(So|mo,01) is ex-
pressed as follows

X [gn (Solmo, o1)]

gn (Solmo, 1) =
= Z exp [B (J2 Somo — Am§ + hmy)] x
{mo}
x [gn (molo1, S1)]" ™", (5)
We will continue until we reach a recursive point and

terminate the calculation of g,function.
Therefore, g, (mo|o1,S1) can be written as

gn (m0|01,51) =

= Z exp [,8 (J3 Mmool — Aaf + hal)] X
{o1}

% [gn—1(01|S1,m1)]"7 1, (6)

where is the partition function of the next shell, i.e., the
(n-1)th shell, seen in Fig.1. Therefore, in this way, the
expression for in the nth-shell is obtained in terms of in
the (n-1)th shell. As seen from Fig.1, these shells are
identical.

In order to find the exact recursion relations, we in-
troduce the following variables as a ratio of the gn func-
tion for the spin-1/2:

_ ga(1/2)
o= o172y "
for the spin-3/2:
_ gn(3/2) _gn(_?’/z) _ gn(l/z)
PN S S G ) MR PN S V)
(8)
and for the spin-5/2:
A = gn(5/2) :gn(_5/2) C, = gn(3/2)
" ogn(=1/2) T ga(=1/2) T ga(—1/2)
_a(32) L ga1/2)
P Py @

The variables Ny, Xy, Yy, Zpn, An, Bn, Cpn, D, and E,,
can obtain by using Eqs. (4)-(6) and these explicit ex-
pressions are given in Appendix. We should mention
that these recursion relations have no direct physical
sense, but all thermodynamic functions can be obtained
from these relations and they reflect the critical behavior
of the system. Thus, we can say that in the thermody-
namic limit (n — o0), the above-mentioned variables
determine the status of the system.

Now we can calculate the sublattice magnetizations
for spins 1/2, 3/2 and 5/2. If the central spin is chosen
to be a spin-1/2 (o), the first sublattice magnetization
of the system is defined by

My =21 00 [ga(00|So,mo)]?,  (10)
{0}

which is easily expressed in terms of the recursion rela-
tions, namely Eqgs. (7)-(9), and calculated as
eP(=A/4+h/2) Na _ oB(=A/4=h/2)
My, = 2eB(-A/4+h/2) NI 4 2eB(-A/4—h/2)

(11)

The next step is to calculate the sublattice magnetization
M/, for a spin-3/2. We can again start from the first
shell on the Bethe lattice, and carry out the whole calcu-
lation by choosing the spin-3/2 (Sp) as the central-spin
instead of spin-1/2 (oy), since all sites with the same
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kinds of spins are equivalent deep inside the Bethe lat-
tice. We perform similar calculation, and rearranging it
for the spin-3/2’s as we have done for 0 = 1/2, we find

M3/2 =

3B (-9A/4+3h/2) yu _ 3B (-9A/4—3h/2) yu
4B (A/A+R/2) g _ B(-A/4—1/2)

26/3(—9A/4+3h/2)Xg + 2e8(-9A/4—3h/2) e )
+2eB(-A/4+1/2) Zi + 2B (~A/4—h/2)

(12)

Finally, if the central-spin is chosen a spin-5/2 (my), we
obtain the third sublattice magnetization with the simi-
lar calculation as above

M5/2 =

5eB(~250/4450/2) gO 5 oB(-25A/4-5h/2) pa
4 3e8(9A/4+3R/2) (0 _ 308(-9A/4-3h/2) pa
4 oB(—A/A4h/2) g _ oB(=A/1=h/2)

268 (~25A/4+5h/2) a4 | 9B(-25A/4-5h/2) pa
+2eB8(-9A/4+3h/2) e+ 968 (—9A/4—3h/2) Do
+26B(=A/4+R/2) [ 968 (~A/4=1/2)

(13)

In order to determine the compensation temperature
Tcomp at which the total magnetization vanishes below
the critical temperature, one has to calculate the total
magnetization. The total magnetization per site is de-
fined as

Mt = My + M35 + My 5. (14)

It is worthwhile mentioning that the occurrence of a com-
pensation point is due to the fact that the magnetic mo-
ments of sublattices compensate each other completely
at T = Tcomp owing to different temperature depen-
dences of the sublattice magnetizations. The existence
of a compensation temperature near the room tempera-
ture in some ferrrimagnetic materials has a crucial im-
portance in the area of the thermomagnetic recording
devices, electronic and computer technologies [12,13].
Moreover, it has been found that some physical proper-
ties show a peculiar behavior at this point. For example,
the coercivity field is strongly temperature dependent
only in the proximity of the compensation temperature
in which it is a maximum at Tcomp, falling to minimum

below Tcomp, before rising again at low temperatures
[39-41].

Mucema B KIT® Tom 92 BeRID.3-4 2010

Thus, we found the sublattice and total magnetiza-
tions in terms of the recursion relations. All informa-
tion about the behavior of the system can be obtained
from these equations, namely Eqgs. (11)—(14). For ex-
ample, we can easily calculate the magnetic susceptibil-
ities in which give some important physical properties
of the system for spins-1/2, 3/2 and 5/2 by using the
Egs. (11)-(13). The susceptibility for the system can be
determined easily from the following equation:

= lim 0 Mq
Xo = 0 "on

where @ = 1/2, 3/2 and 5/2 is taken the values of the
sublattice magnetizations. Hence, total susceptibility is
given by

(15)

XTotal = X1/2 + X3/2 + X5/2 =
Ms 2

. aMl/z . 8M3/2 . 0
= fm T him g + im—y

(16)

We first investigate the behaviors of sublattice magneti-
zations and total magnetization as well as susceptibilities
as a function of the temperature for various values of
the bilinear interactions and the single-ion anisotropy,
and the coordination number, ¢ = 6. Thermal behav-
iors of sublatice magnetizations are obtained solving Egs.
(11)-(13) by using iterations in the recursion relations.
Thermal variation of the total magnetization is found by
using Eq. (14). Moreover, temperature dependence of
the sublattice and total susceptibilities is examined by
solving Eqs. (15) and (16) using iterations in the recur-
sion relations, respectively. A few interesting results are
plotted in Figs.2 and 5 in order to illustrate the calcula-
tion of the phase transition points as well as obtain the
compensation temperatures and their type of behaviors.

From Fig.2, we have seen that the system always
undergoes a second-order phase transition, because sub-
lattice magnetizations become zero continuously as the
temperature increases, i.e., discontinuity does not occur
for the sublattice magnetizations. One can see that the
behaviors of the sublattice magnetizations in Figs. 2a-d
are the similar behavior, except at the absolute zero tem-
perature 0 =1/2, 5 =-3/2, m =5/2in Fig.2a; 0 = 1/2,
S =-3/2,m =3/2inFig.2a,0 =1/2,5 =-3/2, m =
1/2in Fig.2cand 0 =1/2, 5 =-1/2, m = 1/2 in Figs.2d.
On the other hand, we have found that the system always
exhibits the compensation behaviors and their type ei-
ther the N-type, seen in Figs. 2a,b and d or the P-type,
shown in Fig.2c, in the Neel classification nomenclature
[42,43]. We have studied the thermal behavior of the
sublattice magnetizations and the total magnetization for
different coordination numbers, ¢, and found that when
q is large the critical and compensation temperatures
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Fig.2. (a) Temperature dependence of sublattice and total magnetizations for J;
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kTIJ,

—0.1, J» = —2.0, J3 = 1.0 with ¢ = 6, T¢

and Tcomp are the second-order phase transition or critical temperature and the compensation temperature respectively. (a)
A/Js = —15,(b) A/Js = 1.0, (¢c) A/Js = 2.5, (d) A/Js = 5.0

occur for high temperature values, otherwise occur low
temperature values. We have also examined the thermal
behavior of the sublattice magnetizations and total mag-
netization for the same value of bilinear nearest-neighbor
exchange interaction parameters and found that the sys-
tem for the same bilinear nearest-neighbor interactions
always undergoes a second-order phase transition, but
does not exhibit the compensation behaviors.

Fig.3 illustrate the thermal behaviors of the sublat-
tice magnetizations and susceptibilities x, (@ = 1/2,
3/2, 5/2) for J1 —0.1, J2 —2.0, J3 = 1.0 and A/J?,
= —1.5 with ¢ = 6. In Fig.3a, 0 = 1/2, S = -3/2,
m = 5/2 at zero temperature and o and m decrease
and S increases to the zero value continuously as the
temperature increases, therefore a second-order phase
transition occurs T = 3.275 and the phase transition
is from the ferrimegnetic phase of (1/2, -3/2, 5/2) to
the paramagnetic phase. In Fig.3b, when the temper-
ature approaches to Tc, the x;/2 and x5/» sublattice
susceptibilities increase very rapidly and go to positive

infinity at Tc. On the other hand, the x3/, sublattice
susceptibility decreases very rapidly and goes to nega-
tive infinity at T¢. It is also seen from this figure that
the susceptibilities x; /> and x5/, exhibit the usual tem-
perature variation in the vicinity of T¢, but the x3/»
sublattice susceptibility take negative values. We note
that, in general, x1/2 and x5/2 — +00, and x3/2 —
-00 as T — T¢ if in the vicinity of T¢ the following
relation of the magnitude among sublattice magnetiza-
tions is satisfied: |My/s|+ [Ms/a|> |Ms/3|. We have
found similar susceptibilities behavior to the one seen in
the magnetic properties of a mixed ferro-ferrimagnetic
ternary systems of spins 1/2, 1, 3/2 [20,22,23]. The
total susceptibility has the similar behavior of x3/».

We also investigate the behaviors of the sublattice
magnetizations, the total magnetization, and magnetic
sublattice susceptibilities as a function of the single-ion
anisotropy and present one representative graph for J;
=-0.1, J, =-2.0, J3 = 1.0 and kT'/J3 = 0.05 with ¢ = 6,
seen in Fig.4. Figs.4a and b display one of the more in-
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(2)

kT,

Fig.3.(a) Temperature dependence of sublattice and total
magnetizations for J, = —0.1, Jo = —2.0, J3 = —1.0, A/Js
= —1.5 with ¢ = 6, Tc and Tcomp are the second-order
phase transition or critical temperature and the compen-
sation temperature, respectively. (b) Temperature depen-
dence of magnetic sublattice and total susceptibilities for
Ji=-0.1, J» = -2.0,J3 =—-1.0,A/J3 = —1.5 withqg = 6

teresting behavior of the system as follows. At very low
values of the single-ion anisotropy A/Jz we have Mj /o
=1/2, M3/ = -3/2 and M5/, = 5/2; hence the system
exists the ferrimagnetic phase of (1/2, -3/2, 5/2), as the
reduced single-ion anisotropy (A/J3) increases the fer-
rimagnetic phase of (1/2, -3/2, 5/2) smoothly passes to
the ferrimagnetic phase of (1/2, -3/2, 3/2) without any
phase transition, and as the values of A/J; increases fur-
ther the ferrimagnetic phase of (1/2,-3/2, 3/2) smoothly
passes to the ferrimagnetic phase of (1/2, -3/2, 1/2)
without any phase transition (marked as Agg; and Aggo
that are called staggered points). Moreover, when the
values of A/J3 increases further the ferrimagnetic phase
of (1/2,-3/2, 1/2) smoothly passes to the ferrimagnetic
phase of (1/2, -1/2, 1/2) without any phase transition
(one more staggered point which marked as Agtz. One
can analyze the situation as follows. For a half-integer
sublattice, if the single-ion anisotropy is negative and
Mucema B ARITD Tom 92
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Fig.4. The behavior of magnetizations and magnetic sus-
ceptibilities as a function of the single-ion anisotropy for
Jp=-0.1, J, = —2.0, J3= 1.0 and KT/ Js = 0.05 with g =
6. Ac, Acomp and Agt; are the second-order phase tran-
sition, the compensation effect start and finish values, and
the separation point, respectively. (a) For the sublattice
and total magnetizations. (b) For the susceptibilities

large enough, all the spins on B and C sublattices will
be at the spin-1/2 phase instead of the spin-3/2 and
spin-5/2 phases, respectively, at ground state; hence
the system becomes the ferrimagnetic (1/2, -1/2, 1/2)
phase. Actually, when moving along the vertical axis in
the up-down direction, the single-ion anisotropy para-
meter A/Js forces the central spins to their lower spin
state. Thus, a smooth passing, with no phase transition
singularity, can occur between these phases. We have
found a similar behavior to the one seen in the phase
diagrams of the two-su blattice spin-3/2 Ising model by
using the renormalization group calculation [44], mixed
ternary system of spins ¢ = 1/2, § = 1 and m = 3/2
on the Bethe lattice [22, 23] and also in the mixed spin-
1/2 and spin-5/2 Ising system within the effective-field
theory [45]. We should also mention that the peaks or
maxima for the susceptibilities of spin-5/2, marked with
Agt1 and Agga, and for the susceptibilities of spin-3/2,
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marked with Ag;3 are the separation points of these or-
dered phases, seen in Fig.4b.

We can now present the phase diagrams including
the compensation temperatures. The calculated phase
diagrams are presented in the (kT/Js, A/Js) plane
for the different values of bilinear nearest-neighbor ex-
change interaction parameters, seen in Fig.5h for ¢ =
6. In these phase diagrams, the solid line represents
the second-order phase transition line and the dashed-
dot-dot lines illustrate the compensation temperatures.
For very low values of the reduced single-ion anisotropy
A/Js we have the (1/2, -3/2, 5/2) ferrimagnetic phase.
When the value of the A/Js increases, the system se-
quentially passes to the (1/2, -3/2, 3/2), (1/2, -3/2,
1/2), and (1/2, -1/2, 1/2) ferromagnetic phases with-
out any phase transition.

We also calculate the phase diagram of the system
in the (kT/Js), A/Js plane for the same values of the
bilinear nearest-neighbor exchange interaction parame-
ters, namely J; = J, = J3 = 1.0, seen in Fig.6 for ¢ =
3 and 6. From Fig.6, one can see that the system al-
ways undergoes a second-order phase transition; hence
the tricritical behavior does not exist. For very low val-
ues of the reduced single-ion anisotropy the (1/2, 3/2,
5/2) ferrimagnetic phase exists, but for high values of
the reduced single-ion anisotropy and the low reduced
temperature, the (1/2, 1/2, 1/2) ferromagnetic phase
exists.

In conclusion, the ternary system of the type ABC
consisting of Ising spins 0 = 1/2, S = 3/2 and m = 5/2
in the presence of a single-ion anisotropy for the different
values of bilinear nearest-neighbor exchange interaction
parameters on the Bethe lattice exhibits the compensa-
tion behavior to the one seen in the ABC ternary sys-
tem composed of half-integer and integer spin variables,
namely spins 1/2, 1, 3/2 [20, 23], with Ising spins 3/2,
5/2, 3/2 [24], with Ising spins 1, 3/2, 5/2 [26,28,29]
and with Ising spins 3/2, 2, 5/2 [33—35]. The present
system only undergoes a second order phase transition;
hence it does not exhibit the tricritical behavior. How-
ever, the ABC ternary system composed of half-integer
and integer spin variables, namely spins 1/2, 1, 3/2 [19,
22, 23], with Ising spins 1, 3/2, 5/2 [25, 27] and with
Ising spins 3/2, 2, 5/2 [33] display the tricritical behav-
ior; hence these systems undergo both second- and first-
order phase transitions. The present system for the same
values of bilinear nearest-neighbor exchange interaction
parameters on the Bethe lattice also always undergoes
a second-order phase transition, but the ternary system
of Ising spins 1/2, 1, 3/2 for the same values of bilinear
nearest-neighbor exchange interaction parameters on the
Bethe lattice undergoes a second-order phase transition
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Fig.5. Phase diagrams in the (A/Js, kT /Js) plane for the
ABC ternary system consisting of spins ¢ = 1/2, S =
3/2, and m = 5/2 on the Bethe lattice for the coordination
number, ¢ = 6. Solid line indicates a second-order phase
transitions line. The filled triangles are the ordered line
smoothly mediating, with no phase transition, between the
(1/2, -3/2, 5/2) and (1/2, -3/2, 3/2) phases, between the
(1/2, -3/2, 3/2) and (1/2, -3/2, 1/2) phases, and between
the (1/2, -3/2, 1/2) and (1/2, -1/2, 1/2) phases. (a) J1=
-0.1, J, = —2.0, J3 = 1.0, (b) J1 = —1.0, Jo» = —2.0, J3
=1.0, (¢) J1 = —5.0,J> = —2.0, J3 = 1.0

for ¢<3, a second- and first-order phase transition for
g>3 [23].
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Appendix
The explicit expression of recursion relations are cal-
culated as follows:

0 (1/2) _
In (_1/2)

e BIA/4 (eﬁal X;LZ*1+6*,3'11 YTtL]*I)
_|_e*,3A/4 (eﬁa1/3zg*1 _|_e*,3a1/3)

e—,BQA/4 (eﬂag/3X1g—1+e—,3a2 Yrg_l) )
_|_e*,3A/4 (6,3!12/3Zg*1+e*,3a2/3)

N, =

where

a]= 3]1/4+3h/2, andagz —3]1/4+3h/2,

_ 9 (3/2) _
" gn (—=1/2)

e~ 29B8/4 (oBh AT-1 | o8 Ba—1)
L e—9BA/4 (e3ﬂb1/5 Ca—1 4 ¢=38b1/5 Da-1)
4 e—BA/4 (e—ﬁbl/5 Eg—1 + 6[351/5)

= 67255A/4 (efﬁbz Agfl +eﬁb2 3571) )
+ e 9BA/4 (g=30%2/5 (a1 4 ¢3Bb2/5 Da-1)
4 e—BA/4 (6—[352/5 E3~1 4 eﬂb2/5)

Mucema B KIT® Tom 92 BeRID.3-4 2010

gn (=3/2) _

Y= (C12)

[ —258A/4 (ef,[-}b;; Agfl +e,8b3 Bgfl)

+ e 98A/4 (67351)1/5 0;1171 + e38b1/5 ng)

+ eBA/4 (e=Bb1/5 FI—1 4 ¢Bb1/5)

e=25A/4 (¢=b2 Ag—1 4 ¢Bb2 Ba—1)
e 9BD/4 (¢-3Bb2/5 a1 4 ¢36b2/5 Pa-1)

+ e BA/4 (e*ﬂb2/5 Eg*I + 6,3172/5)

_ 9 (1/2) _
" gn (—1/2)

e—25BA/4 (6,3174 A;Jl*1 _|_e*,3b4 Bg*I)
e IBA/4 (e385/5 a1 4 ¢=38b4/5 Pa—1)

+ eBA/4 (e=Bbs/5 FI—1 4 ¢Bba/5)

where

e—25BA/4 (efﬁbzA%fI_FeﬂszgfI)
+ e 98A/4 (673ﬂb2/5 0;1171 + ¢36b2/5 D,‘{*I)

+ e~PA/4 (g=Pb2/5 FI—1 4 (Bba/5)

by= 15J,/4+5h/2, b,= 5J5/4 — 5h/2,

bs= 15J5/4 — 5h/2, and b,= 5J,/4+ 5h/2;

A, =

where

gu(5/2) _ ¢ P[P NI 4 o]

e BA/4 6,363Nq 1+6 ,363]

In (_5/2)

gn (=1/2) — o-pa/s [6502 N,Zif + 6*362]

gn (1/2) B e—BA/4 eﬁcqu 1, e—Bea

|
32) e BA/4 | Bes - ;+e ,304]
! |

[
|
[
|
g (-3/2) _ ¢! [eﬂ“N‘l ’+e—’3°"']
| i
sl
[

9n (=1/2)  ¢-BA/4 [eBeaNI- ;+e m-2]

c1= 5]3/4:+h/2, Co= —J3/4+h/2,
C3= —5]3/4+h/2, Cy= 3]3/4+h/2,

cs= —3J3/4+h/2, and cg= J3/4+h/2.

)
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