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Nonlinearity shapes lattice dynamics affecting vibrational spectrum, transport and thermalization phenom-
ena. Beside breathers and solitons one finds the third fundamental class of nonlinear modes — g-breathers —
periodic orbits in nonlinear lattices, exponentially localized in the reciprocal mode space. To date, the studies of

g-breathers have been confined to the cubic and quartic nonlinearity in the interaction potential. In this paper

we study the case of arbitrary nonlinearity index v in an acoustic chain. We uncover qualitative difference in
the scaling of delocalization and stability thresholds of g-breathers with the system size: there exists a critical
index v* = 6, below which both thresholds (in nonlinearity strength) tend to zero, and diverge when above.

We also demonstrate that this critical index value is decisive for the presence or absense of thermalization. For

a generic interaction potential the mode space localized dynamics is determined only by the three lowest order

nonlinear terms in the power series expansion.

Nonlinearity is a key player in a number of funda-
mental dynamical and statistical physical phenomena in-
cluding thermal conductivity, wave excitation and prop-
agation, electron and phonon scattering. Its impact is
often counterintuitive. E.Fermi, J.Pasta and S.Ulam
(FPU) hypothesized that it underlies thermalization in
crystals and ran the celebrated computational experi-
ment with oscillatory chains with nonlinearity in cou-
pling [1]. Paradoxically, the low wave number ¢ excita-
tions did not spread over the spectrum, staying localized
in several neighbor modes. More than that, it showed al-
most exact recurrencies of the energy to the initial mode
at large times.

At present we know that this scenario is generic and
holds in a certain parameter domain. There exist weak
and strong stochasticity (chaos) thresholds in the en-
ergy/nonlinearity strength: above the former oscillations
become chaotic, but stay localized in the mode space;
only above the latter the oscillations delocalize rapidly
and thermalization occurs [2—-4].

Despite certain achievements in the continuum-limit
approximation with integrable soliton dynamics [5] and
analytic and numeric estimates of the strong chaos
threshold [6—11], only the recently developed theory of
g-breathers (QB) has explained all main ingredients of
the FPU problem [12].

QBs are exact periodic solutions, continuations of
the linear modes in the nonlinear regime, exponentially
localized in the g-space and stable in the suitable para-
meter range. FPU trajectories were shown to be small
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perturbations near stable QBs, hence the absence of ther-
malization and recurrencies. The instability of QBs was
found to coincide with the weak stochasticity threshold,
and delocalization — with the strong stochasticity one
and thermalization.

However, there is a principal question that has never
been addressed: what is the impact of arbitrary nonlin-
earity in the interaction potential? Indeed, all studies
were done with the cubic and quartic ones. A generic
nonlinear interaction potential yields higher order non-
linear terms in the Taylor series expansion about equi-
librium. As the magnitude of these terms increases with
the energy it could be expected that these terms, and not
the qubic and quartic, determine the delocalization and
stability of QBs, and, broadly, thermalization properties
of the systems.

In this Letter we present the theory of QBs in
acoustic chains with arbitrary nonlinearity index in the
interaction potential, exemplifying in the FPU chain.
We demonstrate that there exists a critical nonlinear-
ity index v* = 6, such that for lower order nonlinearities
the delocalization and stability thresholds of QBs ap-
proach zero as the chain length scales to infinity, while
for higher orders they diverge. We find that the crit-
ical index value plays similar role in thermalization of
the chain, which is rapid below it and non-observable
above. It follows that only three lowest order nonlinear
interaction terms are decisive for localization of energy
or thermalization of generic acoustic chains.

The FPU system models an atomic chain by IV equal
mass particles coupled by springs with linear and non-
linear interaction terms:
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where z, is the deviation of the n-th particle from
the equilibrium, and the boundary conditions are fixed
o = zn+1 = 0. The classic a— and f—FPU models
arise for v = 3, v = 4 respectively.

Canonical transformation
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defines the reciprocal space of N normal modes with the

amplitudes standing for coordinates Q4(¢). Dynamical
equations in this case read
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where wy, = 2sin(mg/2(N + 1)) are the normal mode
frequencies, and
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are the intermode coupling coefficients, defining the long-
range coupling between g-oscillators.

In order to establish the continuation of QB in the
nonlinear regime we set x = 0, the energy E;, = E in the
normal mode ¢ = gg, while the other g-oscillators are at
rest. These initial conditions correspond to the periodic
trajectory in the phase space of the linear system. Fol-
lowing [13], the absence of resonances nwg, # Wqq, is
a sufficient condition for the continuation and the latter
holds for generic finite N [14].

Following this argument we develop the perturba-
tion theory for (2) in powers of the small parameter
o = X/RIV + DI Q) = Y20 ().
The frequency of the nonlinear mode is sought in the
form @, = Y0, aiwgz) (t) by means of the Lindstedt-
Poincare method. Take the low-frequency ¢o < N lin-
ear mode Qg (t) = Agcoswgt, Qq4(t) = 0, ¢ # qo
and its linear frequency wéﬁ) = wg, as a zero-order
approximation. The structure of the coupling coeffi-
cients determines that the only non-zero first order terms
are Qgill)qo(t), where kK = 4,6,...,v for even and
k =3,5,...,7 for odd 4. The coupling coefficients wrap
up as B(x_1)g0.00,... .00 = C(V_T”)N, and, finally, the equa-
tions of motion get the form of linear forced oscillators:
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The amplitude of the response on the resonant frequency
(k — 1)wy, reads
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and the frequency of the periodic orbit is given by
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Rewriting (5) in terms of linear mode energies E, =
= w2 A2/2, we obtain localization factors Ay ,:

Ak—1 =0
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Wqo = Wqo
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One can also define the localization length in the
mode space &y, such that E(,_1), = e("”*z)qo/&f!Nqu
Then it follows &y, = —(k — 2)go/(2In Ay 5).

Delocalization criterion is, thus, mgx{)\%,i} ~ 1.

It corresponds to strong interaction between the linear
modes and the breakup of perturbation theory.

The crucial property of (7) is the scaling of localiza-
tion factor A with the system size. For v < 6 there is
a delocalization threshold in N above which the corre-
sponding QB delocalizes. For v = 6 the localization is
independent of the system size in the leading order ap-
proximation, while for v > 6 the localization strengths
in longer chains.

Existence of the critical v* = 6 is of principal
importance for the general problem of thermalization
and equipartition. As indicated above, the thermaliza-
tion/strong chaos threshold in a- and S-FPU is directly
related to delocalization of QBs. It follows, that above
the critical nonlinearity index the onset of strong chaos is
retarded to much higher energies; moreover, the thresh-
old in energy will grow with the system size. The second
consequence is that for a generic nonlinear interaction
potential the thermalization threshold will be fully deter-
mined by the three lowest-order nonlinear terms (y < 6)
in the Taylor expansion about an equilibrium.

Let us illustrate theoretical predictions with numeri-
cal results. First, we compute the QBs in (1) for differ-
ent nonlinearity index, following the numerical scheme

MMucema B AIT® Tom 92 BeIm.5—-6 2010



g-Breathers and thermalization in acoustic chains .. . 407

developed in [12]. It is clearly seen that localization
weakens for v < 6 and improves for v > 6 with the
increase of the system size N (Fig.1).

$ o
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Fig.1. Localization of QBs in dependence on the chain size
for the nonlinearity index below and above the critical
v =6. Here go =1, x =0.001, y =4 and v = 10

To probe the dependence of the thermalization
process on the nonlinearity index directly we perform
the long-time integration of (1) with the initial condi-
tions corresponding to the lowest mode excited to the
energy E = 1. The other parameters are N = 1000,
x = 1 and the integration time ¢+ = 107 is of the or-
der of 5000 oscillation periods of the seed mode. To
characterize the number of effectively excited modes we
calculate the time dependence of the so-called participa-
tion number: P = 1/(22\;1 e?), where e; = E,/E are
the normalized modal energies. (It is easy to see, that
if, say, m modes are excited to the same energy and the
energy of the others is 0 then P = m). This measure
allows us to visualize the mode excitation process and
the results clearly show thermalization for v < 6 and its
absence (on the observed timescale) for the higher order
nonlinearities (Fig.2).

Let us study the linear stability of QBs for even non-
linearity indexes (note that instabilities are suppressed
for odd v = 3 in the whole region of existence of the
localized QB solution [12]). We keep in mind that it
is tantamount to the onset of weak chaos, when chaotic
trajectories stay localized in the mode space on the com-
putationally accessible times, but are believed to ther-
malize through Arnold diffusion, eventually [7, 12]. For
that we linearize equations of motion (2) around the QB
solution Q, = Q(t) + &(t), centered at go and having
the frequency wg,:
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Fig.2. Evolution of participation number in dependence on
the nonlinearity index. Here the mode go = 1 is excited to
E=1att=0,x=1, N =1000
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For v = 4 the strongest instability comes from primary
parametric resonance in (8) and involves pairs of reso-
nant modes q,p = qo £ m, m = 1,2,3,.... For higher
indexes the number of potential instabilities increases
and one needs to take into account all pairs of the type
4,p=(k—2)gptm, m=1,2,3,..., k=4,6,... ,7y—2.
For each pair one excludes non-resonant terms and ob-
tains

€15 + Wi 5lap = —Vwawplp,g COs[(k — 2)gt] —
— 2Vhw§’i)£q,13, (9)
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Standard stability analysis [12] reveals that the first in-
stability to happen corresponds to k = 4 and m = 1 so
that the instability condition reads:

j-2\2 (y—1)x Ev/?7!
(e G

Remarkably, the same critical nonlinearity index
~v* = 6 characterizes the scaling of the instability thresh-
old x* with the system size IV, as it does for localization.
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For v < 6 the instability threshold gradually diminishes
as N grows; for any fixed set of the energy and nonlinear-
ity parameters there exist such N above which all QBs
will become unstable. On the contrary, for v > 6 the
instability threshold grows with the system size; even if
QBs were unstable in small systems they will attain sta-
bility if the chain length exceeds a threshold determined
by (11). Recalling the relation between instability and
the onset of weak chaos, we come to similar conclusions
as to the strong chaos threshold. Namely, for the FPU
systems with the nonlinearity index higher than the crit-
ical one, weak chaos gets suppressed in large chains. In
case of generic nonlinear coupling potential only three
lowest order nonlinear terms in the expansion about the
equilibrium influence and cause the development of weak
chaos regime.

Finally, we report numerical results on the QB sta-
bility. We compute Floquet multipliers for QBs centered
at go = 3 in dependence on the nonlinearity coefficient
taking E = 1, N = 16,32,64, and v = 4,6,8. In ac-
cord with (11), the instability threshold max{u} > 1
increases with N for v = 4 and decreases for v = 8

(Fig.3). The quantitative agreement between the the-
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Fig.3. Dependence of the absolute values of the Floquet
multipliers p of QBs on the nonlinearity strength for (a)
v = 4 and (b) v = 8. Circles mark N = 16, squares —
N = 32, triangles - N = 64

oretical predictions for x* and numerics is very good
(Fig.4).

In conclusion, we develop the theory of g-breathers
in acoustic chains with arbitrary nonlinearity index in
the coupling potential. Theoretical and numerical stud-
ies of the mode space localization and stability reveal
that there exists the critical nonlinearity index v* = 6,
below which g-breathers lose localization and stability
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Fig.4. Theoretical (11), solid lines, and numerical, symbols,
instability thresholds in dependence on the nonlinearity in-
dex vy

as the system size is increased. In a marked contrast,
these properties strengthen in larger chains for higher
order nonlinearities. According to the direct relation be-
tween delocalization/instability and strong/weak chaos
thresholds, the latter must demonstrate the same regu-
larities. Indeed, the long-time evolution from the lowest
mode excitation show fast thermalization below the crit-
ical nonlinearity index and its absence above. For a
generic interaction potential, localization of energy and
thermalization processes are determined only by three
lowest order nonlinear terms in its power series expan-
sion; if they are absent, then thermalization is strongly
suppressed in large systems and extremely high energies
are required for it to be observed.

Beside the fundamental physical problems of ther-
malization and ergodicity, the results build on the the-
ory of nonlinear oscillations and energy localization in
spatially discrete systems with the high demand com-
ing from experiments and applications with micro- and
nano-scale electro-mechanical oscillator arrays [15—-17].
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