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The one-matrix model is considered. The generating function of the correlation numbers is defined in such
a way that this function coincides with the generating function of the Liouville gravity. Using the Kontsevich
theorem we explain that this generating function is an analytic continuation of the generating function of the
Topological gravity. We check the topological recursion relations for the correlation functions in the p-critical

Matrix model.

1. Introduction. There exist at least three ap-
proaches to the 2D Quantum gravity namely the Liou-
ville gravity (LG), the Matrix models (MM) and the
Topological gravity (T'G). Details and references can be
found in reviews e.g. [1, 2].

In this paper we consider the particular p-critical
one-matrix model. The correlation functions are
defined as derivatives of the free energy function
F(to,t1,... ,tp—1) at some point. The key property
of the free energy function of the matrix model is the
fulfilment of the string equation and the KdV equations.
We consider the expansion of the free energy function
at the particular point to = p, t1 =to =...=t,_1 =0
and choose the particular solution of the string equation.
We explain this choice of the boundary conditions in
Section 2. This choice is determined by the agreement
with the (2,2p + 1) Minimal Liouville gravity.

For the simplest case p = 2 the coincidence between
the correlation functions in both approaches is straight-
forward. In the general case the coincidence can be
reached after a substitution of variables suggested in [3].
Note, that the coincidence was checked for many cases
[3—5] but wasn’t proved rigorously, due to the fact that
correlation functions in the Liouville theory were found
only in genus 0 up to four point functions [6].

The term Matrix model referred to related but dif-
ferent things. For example Gross and Migdal in the clas-
sical paper [7] compute the correlation functions for the
p-critical matrix model as derivatives at different point
=tp_2 =0, t,_1 = t. Another possibility
is to tend (formally) the number of the parameters to
infinity (the potential of the model became not a poly-
nomial but a power series). The free energy function
depending in infinitely many variables F'(to,¢1,...) can
be defined as the solution of the string and KdV equa-
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tions. The Witten’s conjecture [8] states that this func-
tion F'(to,t1,...) coincides with the Topological grav-
ity generating function. This conjecture was proved by
Kontsevich [9].

It is natural to ask how to compare these two solu-
tions of the string equation namely the generating func-
tion of the Topological gravity FT¢(¢o,t1,...) and the
matrix model free energy FMM(to,t1,... ,t,—1) men-
tioned in the second paragraph. It is explained in Sec-
tion 3 that after the naive vanishing of the extra para-
meters these functions do not coincide. However, these
functions are connected by an nontrivial analytic con-
tinuation.

The generating function of the Topological gravity
F(to,t1,...) satisfies some partial differential equations
which are equivalent to the Topological recursion re-
lations (TRR) for intersection numbers on the moduli
spaces of Riemann surfaces. These differential equa-
tions involve only finitely many variables. Hence, from
the analytic continuation property mentioned above fol-
lows that TRR hold for the Matrix model function
FMM(tg t1,... ,tp—1). We checked these relations in
genus 2 (namely the Getzler relations [10]) by a di-
rect computation. The fulfilment of TRR in this Matrix
model was checked for the genus 0 in [11], for the genus 1
in [4].

Another recent approach to the relation between the
p-critical Matrix models and Topological gravity is given
in [12, 13].

2. Preliminaries. 2.1. Liouville gravity. In this sub-
section we briefly recall the definition of the correlation
functions in the Minimal Liouville gravity. Details can
be found in [14, 3].

In this paper we need only the (2, 2p+1) Minimal Li-
ouville Gravity. The total action of the Liouville gravity
reads

S = 51 + Sghost + SmmM,
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where Syiv stands for the (2,2p + 1) Minimal CFT ac-
tion, Sghost 12 a standard ghost action and the Liouville
action reads

1 . .
Splg] = = / Vi [g" 0,00, p+Q Rp+4arpe®? | d’z,

where b = 1/2/(2p+ 1) and the parameter y is inter-
preted as the cosmological constant. The observables

are defined as
Or = / @ pi1(2) Vi, —k-1(z) 2,

where @ p11, Vi, _k_1(z) are certain primary fields
of the matter CFT and Liouville theory respectively,
0 < k < p—1. The correlation functions defined by
the formula

<0k1"'0k1v > = / Ok1"'OkN efs[g,(b] D[g5 ¢]

It is convenient to define the Liouville gravity generating
(or partition) function

Aky oo Ak

FLG({A})z kl% (Ogy .0y ) |Aut(k1‘a."' . ,nkn)| N

- / Dig, ¢ e 5109, 1)

p—1

Sxlg, 8] = S[g, 4] + Z Ar, O,

k=1

Consider the genus expansion of the function
F'C¢ = FYC 4+ FLC 4+ ...,

where FgLG is a generating function of the genus g cor-
relation functions. The functions F-'“ have the scaling

property e.g.
LG ( 00, A0k _ 2B LG
Fy=(p™m, p™ M) = p 2 Fy'™ (1, Ar).
The gravitation scaling dimensions of the variables

k+2
b= 2)

Hence the function Fi*® should has the form

2p+8 t1  to tp—1
F({JG:,U 2 g(maﬁaam> (3)
It follows from the definition of the function FL¢ (1)
that the function g is defined by the expansion into the
power series.
2.2. Matrix models. In this section we give some ba-
sic notion on the Matrix models. Details can be found in

the reviews [1, 2] or in the recent paper [4]. The free en-
ergy of the one-matrix approach is defined by the matrix
integral

F(vg, N) = log / dMe=trV (M)

where M is a Hermitian N x N matrix and V(M) =
= N> v M?* is a polynomial potential. It is known
[1, 2] that the function F' can be expanded into the se-
ries
F(ve,N) =) N> 29F,(v). (4)
9=0

Each term Fj is equal to the sum of contributions of
connected surfaces of genus g made of polygons. The
one-matrix model possesses a set of multi-critical points,
labeled by integer p = 1,2, 3, ... in the space of the “po-
tentials” V(M) = N Y v, M2*. The p-critical point ex-
ists if the number of variables is greater then p i.e. the
degree of V is greater than 2p. We consider the p-critical
point for the potential V(M) = N Y1 v, M?*. The
leading singular term of the function Fj has the scaling
property

FSn8 [\ 3wy, N] = (\PF3/2) 19 58, N, (5)

where wy, are certain coordinates centred at the p-critical
point. Double scaling limit corresponds to N — oo and
wr — 0 as wg = (stz)f%tk. Usually ¢ is set to 1,
but we keep € as a parameter in order to consider the
genus expansion. In the double scaling limit near the
p-critical point the expression (4) looks like

oo
FSing[’lUk] — ZN272QF5ing ((stz)_;‘%tk) —
9=0

o0
=e? Z eI FE8[ty,], (6)
g=0

where we used the scaling property (5) in the second
equality. Below we will denote F;il‘g as F,; and perform
the substitution e “2F ~ F for simplicity.

2.3. The String equation. The key property of the
function F' is the fulfilment of the string equation and
the KdV equations. Denote by to,%1,... ,,—1 the KAV
coordinates near the p-critical point. All requirements
for the KdV coordinates are stated below (for the defin-
ition see e.g. [4, Sec. 4] or the reviews [1, 2]). Let

tp 1,6) = 0°F(to,t1,... ,t, 1,€)/0t2

U(to,tl,... p—1°

Below we use the notationt_» =1,¢t_; =0, ¢ = t,_1,
d = 0/0z. The string equation reads

[P,Q]=¢, (7)
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where Q = e2d? +uw and P = Zp+ tp—1— ka 172 5
two differential operators. Q 1 “1/2 is the non-negative
part of the pseudo-differential operator Q*~1/2. The
function u(to,t1,... ,tp—1,€) is a solution of (7).

It is known (see e.g. [2, App. A]) that

0" Oh1/2 ] = de

(8)

where Ry (u, Uy, Ugy, - .. ) are the Gelfand—Dikii polyno-

mials in u and its x derivatives. These polynomials are

determined by the recursion relation
dRry1  dRy 1

e d®Ry,
dx = d—+ quk+4 d3, (9)

with the boundary conditions R; = w and Ry vanish at
u = 0. The first polynomials have the form

3 1
Ry =u, Ry = Zu? +521uzza

4

5 5 5 !

R; = §u3 + 2 (guuu 16 ) + ¢t 16uMM’
(2k — 1)
2k k!

It follows from (7) and (8) that

Ry = u* + o(e).

p+1

thflfkRk(u) = —. (10)
k=1

We are looking for the solution u in the form
u(t,€) = up + u1e® + used + ...

By taking the zeroth order of (10) and rescaling the pa-
rameter tp_1_g — % p—1—k We get

p+1
)= th,k,lu’g =up '+ th k-1ug = 0.
k=0

(11)

One can consider the next orders of € expansion. It is
easy to see that for any g the uy can be expressed as a
rational function in u*, it’s z derivatives and P*) (u*).

It remains to choose the solution of the equation (11).
These functions in the variables ¢ have the scaling prop-
erty with the dimensions of the variables

k+2

dlm(tk) = 2

Comparing with (2) we conclude that tp has the same
scale dimension as the cosmological constant y in the Li-
ouville theory. These parameters have lowest dimension
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hence its identification is unique up to scalar multiply.
We identify to and —u. Using (3) we get

O2F (to t1,... sty
uO(H,tl,tz,.._ ,tp_l) = (Oal p 1) —
tp 1
t t t._
=g, 2 _tpo1
=K g(u3/2’u25-.-,u(p+1)/2>a (12)

where the function g is specified by the expansion into
the power series. This choice of the root was mentioned
in the Introduction.

3. Comparison with Topological gravity. In
[15] Witten introduced the Topological gravity. The cor-
relation functions in this theory are defined in terms of
intersection numbers on the moduli spaces of complex
curves with marked points.

Let M, , be the moduli space of complex curves of
the genus g with n ordered marked points and Mg,n
be its Deligne-Mumford compactification. M, , is the
moduli space of stable curves?). M, , is not a manifold
but an orbifold (i.e. locally the quotient of a manifold
by a finite group). Its complex dimension is 3g — 3 + n.

There are natural cohomology classes on such mod-
uli spaces. Let ¥ be a stable curve with marked points
Z1,...,%,. By the definition of Deligne-Mumford com-
pactification the curve ¥ may has singularities (double
points), but the marked points must be smooth. Thus
the cotangent space T, ¥ is well defined and the holo-
morphic bundles £ on M, ,, with the fiber T ¥ over
(%,z1,...,2,) can be defined as well. Denote by ¥, the
first Chern class of L, ¥ = c1(Ls)-

The correlation numbers in the Topological gravity
have the form

<le---7'd,,>=/7 flil... in, (13)
Myon

where the genus g is uniquely determined by the condi-
tion

di+-+d,=dimM,, =3g—3+n.

The generating function of these correlation numbers
reads®

> ta, ...ta,
|Aut(dy, ... ,dn)|

(14)

Pl b, ..

)= Y (tam

di,da,...

2)Recall that stable curve means connected, projective curve
with no singularities other than double points and with a finite
automorphism group. The precise definition and details can be
found e.g. in [16]

3)We use the notation F‘,fk,ﬁ, Rk instead of standard
F,ty,u, Ry in order to distinguish the related but not coincident
the Topological gravity and the Matrix model objects.
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Witten conjectured in [15] the equivalence between
two approaches to 2D Quantum gravity namely the
Topological gravity and the Matrix models. The pre-
cise formulation of this conjecture (see e.g. [8]) states
that F(fo,%,...) satisfies the KAV hierarchy

ou _ ORy 1]
ot Ot

and the string equation

OF # . OF
oty 2 kg 1 ot
Here @ = 8%F /013 and each polynomials Ry, will coin-
cide with Ry /2(2k — 1)!! if we set u = 2% and ¢ = 1.
These polynomials Ry have the form

- _ ~ U Uy
Ri=u,  Rz=—5+75
Ro=G+ 5 Toat2a0 - Be=gg T

This conjecture was proved by Kontsevich [9]. The
string and the KdV equations appear in the Matrix mod-
els as an equations for the free energy function.

It is natural to ask how to relate the generating func-
tion F(fo,...) in infinitely many variables to the free
energy F(to,...,tp—1) of the p-critical Matrix model.
For example, assume that we know all intersection num-
bers (13), how to find the power series expansion of the
function g in (12)?

Consider the simplest example p = 2. Using the
KdV equations, we get from the string equation

i . ORjla
- = ]. + Z tk+1¢[].
Integrating and restricting it to the genus 0 part, we
obtain
o0 _ ﬂg
Z tkﬁ - ’&0 == 0
k=0

Comparing this with the genus 0 string equation in the
Matrix models (11) in the p = 2 case we relate the vari-
ables

E():tl:%, El—].:to:—/,l,,
. (15)

t3:3!, 52254:55:...:0_
Substituting ([16, Prop 4.6.10])

(n —3)!

S N

in (14), we obtain the genus 0 generating function
Fo(z:o,z:l, .. ) =

(k1 +2ky + 3kg +...)! Z’g"i’fl
Olko 11k ... kolky !

k1,ka,...
ko=ko+2k3z+3ks+...+3
With the relation (15), we get

for* 1 (31)*

o (1 + 3ks)!
tio(to, 1) = Z ko 11k1 (31)ks =
ko ks Otko1! 1(3') 3 (2k3 + 1)'k1'k3'
ko=2k3+3

_ (k1 + 3k3)! 72ka 17k
= kr,

i (2k3 + 1)k Res! ©

Finally, summing on k;, we obtain

R L. ) I
0 — - (2k3 + 1)|k3| (1 _Z1)3k3+1 —
3
xr £173 il?s
=4+ 43 4 16
[ (16)

This function differs from the Matrix models u in for-
mula (12)

2
— /2 T\ _ T 3T 17
uo /J’ g ('u/3/2> IJ’ 2,U/ 8/1«5/2 + ( )

Let us consider the expansions (16) and (17) of the
roots of the string equation u® — yu +z = 0 at the point
x = 0. At this point (16) and (17) equal to 0 and p'/?
respectively. A root of an algebraic equation is locally
given by an analytical function in the coefficients of the
equation. If the coefficients run round the discriminant
set?) the roots of equation permute. The group of such
permutations is known as the monodromy group. In this
case this group is a Galois group of general polynomial
and equals to the group of all permutations. Thus (16)
and (17) do not coincide but are connected by a non-
trivial analytic continuation in z.

It was mentioned in Section 2 that uy for g > 0 can
be expressed as rational functions in u* = wug and its
x derivatives. Therefore, not only %, transfers to wug
by an analytic continuation but the whole @ = Y e2* i,
transfers to u = Y. eFuy.

For p > 2 the argument is quite similar. In the gen-
eral case u and @ are expansions of roots of the string
equation P(ug) = 0 at different points unlike the p = 2
case. Still they are connected by an analytic continua-
tion in the variables tg, t1, . ..

4)The set where the discriminant of the corresponding polyno-
mial vanishes.
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