
Pis'ma v ZhETF, vol. 93, iss. 2, pp. 69 { 72 c 2011 January 25Flat band in the core of topological defects: bulk-vortexcorrespondence in topological superuids with Fermi pointsG.E.Volovik1)Low Temperature Laboratory, Aalto University, School of Science and Technology, FI-00076 AALTO, FinlandLandau Institute for Theoretical Physics RAS, 119334 Moscow, RussiaSubmitted 25 November, 2010We discuss the dispersionless spectrum with zero energy in the linear topological defects { vortices. Theat band emerges inside the vortex living in the bulk medium containing topologically stable Fermi points inmomentum space. The boundaries of the at band in the vortex are determined by projections of the Fermipoints in bulk to the vortex axis. This bulk-vortex correspondence for at band is similar to the bulk-surfacecorrespondence discussed earlier in the media with topologically protected lines of zeroes. In the latter casethe at band emerges on the surface of the system, and its boundary is determined by projection of the bulknodal line on the surface.1. Introduction. When the fermion zero modeslocalized on the surface or on the topological defectsare studied in topological media, the investigation ismainly concentrated on the fully gapped topologicalmedia, such as topological insulators and superu-ids/superconductors of the 3He-B type [1 { 3]. However,the gapless topologicalmedia may also have fermion zeromodes with interesting properties, in particular theymay have the dispersionless branch of spectrum withzero energy { the at band [4, 5].The dispersionless bands, where the energy vanishesin a �nite region of the momentum space, have beendiscussed in di�erent systems. Originally the at bandhas been discussed in the fermionic condensate { theKhodel state [6 { 9], and for fermion zero modes local-ized in the core of vortices in superuid 3He-A [10 { 12].The at band has also been discussed on the surface ofthe multi-layered graphene (see [13, 14] and referencestherein). In particle physics, the Fermi band (called theFermi ball) appears in a 2+1 dimensional nonrelativis-tic quantum �eld theory which is dual to a gravitationaltheory in the anti-de Sitter background with a chargedblack hole [15].Recently it was realized that the at band can betopologically protected in gapless topological matter. Itappears in the 3D systems which contain the nodal linesin the form of closed loops [4] or in the form of spirals[5]. In these systems the surface at band emerges onthe surface of topological matter. The boundary of thesurface at band is bounded by the projection of thenodal loop or nodal spiral onto the corresponding sur-face. Here we extend this bulk-surface correspondence1)e-mail: volovik@boojum.hut.�

to the bulk-vortex correspondence, which relates the atband of fermion zero modes in the vortex core to thetopology of the point nodes (Dirac or Fermi points) inthe bulk 3D topological superuids.2. Vortex-disgyration. As generic example weconsider topological defect in 3D spinless chiral super-uid/superconductor of the 3He-A type, which containstwo Fermi points (Dirac points). Fermions in this chiralsuperuid are described by HamiltonianH = �3�(p) + c (�1p � e1 + �2p � e2) ; �(p) = p2 � p2F2m ;(1)where �1;2;3 are Pauli matrices in the Bogoliubov-Nambuspace, and in bulk liquid the vectors e1 and e2 areunit orthogonal vectors. There is only one topologicallystable defect in such superuid/superconductor, sincethe homotopy group �1(G=H) = �1(SO3) = Z2. Wechoose the following order parameter in the topologi-cally non-trivial con�guration (in cylindrical coordinatesr = (�; �; z)):e1(r) = f1(�)�̂; e2(r) = ẑ sin�� f2(�)�̂ cos�; (2)with f1;2(0) = 0, f1;2(1) = 1. The unit vector l̂, whichshows the direction of the Dirac points in momentumspace, p� = �pF l̂, isl̂(r) = e1 � e2je1 � e2j = f2(�)ẑ cos�+ �̂ sin�qf22 (�) cos2 �+ sin2 � : (3)Asymptotically at large distance from the vortex coreone hase1(� =1) = �̂; e2(� =1) = ẑ sin�� �̂ cos�;l̂(� =1) = ẑ cos�+ �̂ sin�; (4)�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 1 { 2 2011 69



70 G.E.Volovikwhich means that changing the parameter � one makesthe continuous deformation of the pure phase vortex at� = 0 to the disgyration in the l̂ vector without vorticityat � = �=2, and then to the pure vortex with oppositecirculation at � = � (circulation of the superuid veloc-ity around the vortex core is H ds � vs = � cos�, where� = �~=m). We consider how the at band in the coreof the defect evolves when this parameter � changes. Inbulk, i.e. far from the vortex core, the Dirac points areat p� = �pF l̂(� =1) = �pF (ẑ cos�+ �̂ sin�) : (5)Due to the bulk-vortex correspondence, which we shalldiscuss in the next section, the projection of these twopoints on the vortex axis gives the boundary of the atband in the core of the topological defect:E(pz) = 0; p2z < p2F cos2 �: (6)This is the central result of the paper: in general theboundaries of the at band in the core of the linear topo-logical defect (a vortex) are determined by the projec-tions on the vortex axis of the topologically protectedpoint nodes in bulk. In the next section we considerthe topological origin of the at band and geometricalderivation of its boundaries. In Sec.4, the boundaries ofthe at band (6) are obtained analytically.3. Bulk-vortex correspondence. Let us �rst givethe topological arguments, which support the existenceof the at band inside the vortex-disgyration line. Letus consider the Hamiltonian (1) in bulk (i.e. far fromthe vortex core) treating the projection pz as parame-ter of the 2D system. At each pz except for two valuespz = �pF cos� corresponding to two Fermi points (seeFigure), the Hamiltonian has fully gapped spectrum andthus describes the e�ective 2D insulator. One can checkthat this 2D insulator is topological for jpzj < pF j cos�jand is topologically trivial for jpzj > pF j cos�j. For thatone considers the following invariant describing the 2Dtopological insulators or fully gapped 2D supeuids [16]:~N3(pz) == 14�2 tr �Z dpxdpyd!G@pxG�1G@pyG�1G@!G�1� ; (7)where G is the Green's function matrix, which for non-interacting case has the form G�1 = �! � H . This in-variant, which is applicable both to interacting and non-interacting systems, gives~N3(pz) = 1; jpzj < pF j cos�j; (8)~N3(pz) = 0 ; jpzj > pF j cos�j: (9)
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~Projections of Dirac (Fermi) points on the direction of thevortex axis (the z-axis) determine the boundaries of theat band in the vortex core. Fermi point in 3D systemsrepresents the hedgehog (monopole) in momentum space[16]. For each plane pz = const one has the e�ective 2Dsystem with the fully gapped energy spectrum Epz (px; py),except for the planes with pz� = �pF cos�, where the en-ergy Epz(px; py) has a node due to the presence of thehedgehogs in these planes. Topological invariant ~N3(pz)in (7) is non-zero for jpzj < pF j cos�j, which means thatfor any value of the parameter pz in this interval the systembehaves as a 2D topological insulator or 2D fully gappedtopological superuid. Point vortex in such 2D superuidshas fermionic state with exactly zero energy. For the vor-tex line in the original 3D system with Fermi points thiscorresponds to the dispersionless spectrum of fermion zeromodes in the whole interval jpzj < pF j cos �jAt pz = �pF j cos�j, there is the topological quan-tum phase transition between the topological 2D \in-sulator" and the non-topological one. The di�erence of2D topological charges on two sides of the transition,~N3(pz = pF cos� + 0) � ~N3(pz = pF cos� � 0) = N3,represents the topological charge of the Dirac point inthe 3D system { hedgehog in momentum space [16]. Aswe know, the topological quantum phase transitions areaccompanied by reconstruction of the spectrum of fermi-ons bound to the topological defect: fermion zero modesappear or disappear after topological transition in bulk[2, 17 { 19]. For the pure vortex, i.e. at � = 0 or � = �,we know from [10] that the vortex contains the fermioniclevel with exactly zero energy for any pz in the regionjpzj < pF , i.e. in the region of parameters where the2D medium has non-trivial topological charge, ~N3 = 1.On the other hand no such levels are present after thetopological transition to the state of matter with ~N3 = 0.The similar reconstruction of the spectrum at thetopological quantum phase transition takes place for any�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 1 { 2 2011



Flat band in the core of topological defects : : : 71parameter � 6= �=2 of the considered defect. This canbe understood using the topology in the mixed real andmomentum space [20, 21]. To study fermions with zeroenergy (Majorana fermions) in the core of a point vor-tex in a 2D topological superconductor, the Pontrya-gin invariant for mixed space has been exploited inRef. [1]. The Pontryagin invariant describes classesof mappings S2 � S1 ! S2. Here the mixed spaceS2�S1 is the space (px; py; �), where � is the coordinatearound the vortex-disgyration far from the vortex core.This space is mapped to the sphere S2 of unit vectorĝ(px; py; �) = g(px; py; �)=jg(px; py; �)j describing the2D Hamiltonian. In our case it is the Hamiltonian (1)outside the vortex core:Hpz;�(px; py; �) = �igi(px; py; �; pz; �); (10)g3 = p2x + p2y2m � �(pz); �(pz) = p2F � p2z2m ;g1 = c(py cos�� px sin�);g2 = c(pz sin�� cos�(px cos�+ py sin�)); (11)with pz and � being the parameters of this e�ective 2DHamiltonian. The Pontryagin Z2 invariant is non-trivialand thus the zero energy state exists in the core of the de-fect in the e�ective 2D superconductor, if the parameterspz and � of the 2D Hamiltonian (10) satisfy conditionjpzj < pF j cos�j.For the considered linear topological defect (vortex-disgyration) in the 3D system this implies that the coreof this defect contains the dispersionless band in the in-terval of momentum jpz j < pF j cos�j, i.e. one obtainsequation (6).4. Flat band from quasi-classical approach.Let us now support the above topological argumentsby explicit calculation of the fermionic at band in thevortex-disgyration, which is described by the order para-meter (2). The Bogoliubov-de Gennes Hamiltonian forfermions localized on the defect line is obtained from (1)by substitution of the classical transverse momentum bythe quantum-mechanical operator,p? ! (�irx;�iry); (12)while pz remains the good quantum number which servesas parameter of the e�ective 2D system. The zero en-ergy states in this 2D system can be studied using thequasiclassical approximation, see details in Chapter 23of the book [16]. For our purposes it is su�cient to con-sider the Hamiltonian on the trajectory s which crossesthe center of the vortex. The modi�cation of quasiclassi-cal Hamiltonian in Eq.(23.16) in [16] for the consideredvortex-disgyration is

Hqcl(pz) = �i qm�3@s + U(s)�2;U(s) = cpz sin�� cqf2(jsj)sign(s) cos�; (13)q =pp2F � p2z:The Hamiltonian Hqcl(pz) is super-symmetric if the as-ymptotes of the potential U(s) have di�erent sign fors = �1 and s = +1. The latter takes place ifjpzj sin� < qj cos�j: (14)The super-symmetric HamiltonianHqcl(pz) has the statewith zero energy, Eqcl(pz) = 0, for any pz in the interval(14). For vortices in chiral superuids it is known [16]that the zero energy state of the quasiclassical Hamil-tonian, Eqcl = 0, automatically results in the true zeroenergy state, E = 0, obtained in the exact quantum-mechanical problem using the Bogoliubov-de GennesHamiltonian. This proves the existence of the at bandin the range of momentum (14), which coincides withequation (6) and is in agreement with the topologicalanalysis in previous section.5. Discussion. We discussed the 3D matter withtopologically protected Fermi points. Topological de-fects (vortices and vortex disgyrations) in such mattercontain the dispersionless fermionic band with zero en-ergy { the at band. The boundaries of the at bandare determined by projections of the Fermi points onthe axis of the topological defect. This bulk-vortex cor-respondence for at band is similar to the bulk-surfacecorrespondence discussed in the media with topologi-cally protected lines of zeroes [5, 4]. In the latter casethe at band is formed on the surface of the system, andits boundary is determined by projection of the nodalline (closed loop [4] or spiral [5]) on the correspondingsurface.This work is supported in part by the Academy ofFinland, Centers of excellence program 2006{2011. Itis my pleasure to thank V.B. Eltsov, T.T. Heikkil�a andN.B. Kopnin for helpful discussions.1. J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120(2010).2. M.A. Silaev and G. E. Volovik, J. Low Temp. Phys, 161,460 (2010); arXiv:1005.4672.3. T. Fukui and T. Fujiwara, arXiv:1009.2582.4. A.P. Schnyder and Shinsei Ryu, arXiv:1011.1438.5. T. T. Heikkil�a and G.E. Volovik, Pis'ma v ZhETF 93,63 (2011); arXiv:1011.4185.6. V.A. Khodel and V.R. Shaginyan, JETP Lett. 51, 553(1990).7. G. E. Volovik, JETP Lett. 53, 222 (1991).�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 1 { 2 2011
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