Фазовый переход графен-графит на поверхности науглероженного металла

Е.В. Рутьков, А.В. Кузьмичев, Н.Р. Галль¹⁾

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 С-Петербург, Россия

Поступила в редакцию 22 декабря 2010 г.

На атомном уровне в сверхвысоковакуумных условиях экспериментально изучены закономерности фазового перехода, приводящего к трансформации графенового слоя в многослойную графитовую пленку на поверхности науглероженного металла. Показано, что этот процесс определяется динамическим равновесием между краевыми атомами графеновых островков и хемосорбированной фазой углерода – двумерным углеродным "газом" и наблюдается в области температур 1000–1800 К. Закономерности фазового перехода на поверхности Ni(111), Rh(111) и Re(10-10) оказались схожи, хотя конкретные кинетические характеристики процесса зависят от свойств подложки. Показано, что изменение излучательной способности поверхности при образовании на ней многослойной графитовой пленки ускоряет фазовый переход и является причиной температурного гистерезиса.

Уникальные электронные и физико-химические свойства графена уже много десятилетий приковывают к нему пристальное внимание исследователей [1-15], в 2010 г. за работы в области создания графеновых слоев была присуждена Нобелевская премия. Графен легко образуется на поверхности металлов как в результате каталитического разложения углеродсодержащих молекул, так и при выделении атомов углерода, растворенных в объеме металла [1]. Графен является элементарной строительной ячейкой графитового кристалла, но отличается от него по физико-химическим и электронным свойствам [16-18]. Механизм конденсации многослойных графитовых пленок из графена на сегодня изучен очень слабо, хотя имеет большое научное и практическое значение, и рост графитовых слоев на поверхности наблюдался многократно [1-4, 19-21].

В наших работах [1-3] ранее был детально изучен двумерный фазовый переход в углеродном слое на металлах, приводящий к образованию островков графена и сплошного графенового слоя. Двумерность островков и их графеновая структура были подтверждены прямыми опытами с применением сканирующей туннельной микроскопии [22,23]. Островки графена образуются при достижении на поверхности металла определенной критической степени покрытия θ_k углеродом в фазе хемосорбированного "газа". Зависимость $\theta_k = f(T)$ была определена нами для системы Ir(111)-углерод в работе [3]. Изучены определенные физико-химические свойства графеновых островков на металлах: их каталитические свойства в реакциях диссоциации различных солей [1], эмиссионные свойства [2], адсорбционно-десорбционные свойства [2,24].

Опыты проводили в условиях высокого вакуума $(p \sim 10^{-10} \text{ торр})$, в призменном оже-спектрометре высокого разрешения $\Delta E/E \sim 0.1\%$ [25]. В камере прибора был собран узел для измерения термоэлектронной эмиссии с нагретых образцов. Оже-спектры могли сниматься прямо с образцов, нагретых вплоть до 2000 К, что в ряде случаев имело принципиальное значение. Использовались однородные по работе выхода металлические ленты (Rh, Re и Ni) размерами (40 \times 0.02 \times 1) ${\rm MM}^3,$ которые текстурировались прогревом переменным током и очищались от примесей выдержкой нагретых лент в атмосфере кислорода [2]. После очистки никаких примесей на поверхности подложек не наблюдалось. Образцы науглероживались по стандартной процедуре-выдержкой нагретых лент в атмосфере паров бензола [26, 27].

На рис.1а представлена зависимость интенсивности оже-сигнала углерода от температуры подложки для трех науглероженных металлов – Ni(111), Rh(111) и Re(10-10). В этих опытах температура образцов поднималась до максимально возможных значений, а затем ступенчато понижалась, при этом оже-спектры углерода записывались при данной температуре после достижения равновесных условий, когда интенсивность оже-сигнала углерода не менялась во времени. Во всех трех системах можно выделить несколько характерных участков. На участке "a-b" на поверхности имелся только двумерный хемосорбированный углеродный "газ", концентрация которого существенно зависела от выбранного металла. Если на Rh(111) хемосорбированный углерод фиксируется на уровне шумов прибора, то в случае Ni(111)

¹⁾e-mail: gall@ms.ioffe.rssi.ru

Рис.1. Изменение оже-сигнала углерода при образовании графена и графита на поверхности металлов: (а) – изменение интенсивности C_{KVV} оже-сигнала при выделении углерода из объема насыщенного углеродом металла при снижении температуры: 1 - Rh(111)-C; 2 - Ni(111)-C; 3 - Re(10-10)-C. Температура науглероживания металлов T, K: 1 - 1350; 2 - 1400; 3 - 1850. (b) – Оже-спектры углерода из различных адсорбционных состояний: $1 - \text{хемосорбированный углеродный "газ" на никеле при <math>T = 1450 \text{ K}; 2 - \text{хемосорбированный углеродный "газ" на рении при <math>T = 1900 \text{ K}; 3 -$ пленка графена на рении; 4 -толстая пленка графита на родии, никеле и рении

уже имеется заметный углеродный пик с концентрацией $N_c \sim (2 \div 3) \cdot 10^{14} \, {\rm ar/cm^2}$. Форма линии карбидная (спектр 1 на рис.1b), характеризующая сильную связь углерод-металл. В случае ${\rm Re}(10\text{-}10)$ на поверхности имеется "густой" углеродный "газ" с концентрацией $N_c = 2 \cdot 10^{15} \, {\rm ar/cm^2}$ (спектр 2 на рис.1b).

На участках "b-c" (рис.1а) происходит двумерный фазовый переход с образованием островков графена. Начало этого перехода легко и четко фиксируется по

Письма в ЖЭТФ том 93 вып. 3-4 2011

резкому росту тока термоэлектронной эмиссии, так как работа выхода островков графена ниже, чем у металлов: так, в случае Rh(111)-углеродный "газ" имеет $\varphi = 5.0$ эB, а для островков графена на родии $\varphi = 4.35$ зВ [28].

Очень интересный и физически важный участок "c-d" на рис.1а – полочка, которая соответствует образованию и поддержанию сплошной пленки графена. В этом случае C_{KVV} оже-спектр углерода приобретает характерный "графеновый" вид (спектр 3 на рис.1b), практически одинаковый для всех изученных подложек.

При достижении точки "d", то есть снижения температуры на $50 \div 70^{\circ}$ от начала полочки, происходит резкий рост интенсивности оже-сигнала углерода, а СКVV оже-спектр приобретает классический "графитовый" вид (спектр 4 на рис.1b), не зависящий от материала подложки и в точности соответствующий монокристаллу графита [29]. При этом оже-сигнал подложки теряется в шумах прибора, что говорит об образовании многослойной пленки графита. Таким образом, на участке "d-e" происходит объемный фазовый переход "графен-графит", при том, что сам участок имеет ширину, не превышающую $\Delta T = 5$ К. Новая полочка "e-f" соответствует многослойной пленке графита: оже-спектроскопия "чувствует" только 5 ÷ 6 верхних атомных слоев и при дальнейшем росте пленки по толщине интенсивность оже-сигнала практически не меняется.

Для того чтобы разобрать физическую картину перехода "графен-графит", рассмотрим сперва образование графена из растворенного и хемосорбированного углерода, то есть природу областей "b-c" и "c-d" на рис.1а. На участке "b-c" имеется динамическое равновесие между островками графена и хемосорбированным углеродным "газом", расположенным как на свободной поверхности металла, так и под слоем графена (рис.2а). В точке "с" островки графена слились в сплошную пленку, края которых контактируют с металлом и являются ее дефектами [24]; теперь динамическое равновесие имеет место между сплошным слоем графена и хемосорбированным углеродным "газом", расположенным под ним, на поверхности металла [1, 2]. Этот "газ" в свою очередь находится в равновесии с углеродом, растворенным в объеме металла. Таким образом, весь углеродный "газ" на поверхности под графеном задействован для динамического поддержания графеновых островков первого слоя: атомы углерода из дефектов слоя (краев островков) непрерывно переходят в фазу хемосорбированного "газа" и обратно. Если мысленно убрать углеродный "газ" с поверхности подложки, то островки

Рис.2. Физические процессы при уменьшении тока накала науглероженной родиевой ленты, $T_{\rm carb} = 1730$ К: (a) – схема процессов при образовании графена; (b) – схема процессов при фазовом переходе "графен – графит": A – островок графена; B – края графеновых островков химически связанных с металлом; C – хемосорбированный углеродный "газ"; D – хемосорбированный углеродный "газ" под островками графена; E – атомы углерода, растворенные в объеме металла, F – слой графита; (c) – зависимость термоэлектронного тока lg I^- от температуры науглероженного при $T_{\rm carb} = 1730$ К родия

графена при $T \sim 1600 \div 1700 \,\mathrm{K}$ мгновенно разрушатся [30].

Для зарождения второго слоя графена необходимо наличие избыточных атомов углерода на поверхности металла. При снижении температуры насыщенного твердого раствора Me-C понижается предельная растворимость углерода в объеме подложки, и "лишние" атомы углерода выходят на поверхность, увеличивая концентрацию атомов углерода в хемосорбированной фазе. В какой-то момент достигается новое критическое покрытие θ_k , необходимое для того, чтобы начал расти следующий слой графена.

Этот момент соответствует объемному фазовому переходу, так как образующиеся слои графена, входящие в состав графитовой пленки, уже потеряли контакт с нагретым металлом и не принимают участия в равновесии с хемосорбированной фазой углерода (рис.2b). Связь краевого атома углерода в объемном графите $E \approx 6$ эВ [1], и требуются высокие температуры для его термического разрушения (T > 2000 K). В то же время для атомов углерода на краях графеновых островков или дефектов первого слоя, контактирующих с металлом, энергия E связи краевого атома углерода с островком резко уменьшается из-за каталитического действия подложки. Так, для подложки из никеля E = 2.5 эВ, а для рения E = 3.0 эВ [31]. Важно отметить, что для дальнейшего образования и роста третьего и последующих слоев графена уже не требуется дополнительного увеличения углеродного покрытия в фазе хемосорбированного "газа".

Равновесная толщина графитовой пленки, образующейся на участке "e-f" (рис.1а) определяется величиной и зависимостью от температуры предельной растворимости n_c углерода в металле. В случае никеля, имеющего большую величину n_c , например, для $T_{\rm carb} = 1365 \, {\rm K} \ n_c \approx 2 \, {\rm at.\%} \ [32]$, при $T = 900 \, {\rm K}$ вырастает графитовая пленка в сотни атомных слоев.

На самом деле объемный фазовый переход "графен-графит" носит несколько более сложный характер, что наблюдается при изучении тока термоэлектронной эмиссии І- с нагретых науглероженных образцов. На рис.2с для системы Rh(111) углерод приведена зависимость $\lg I^- = f(T)$, когда температура науглероживания родия равнялась T_{carb} = 1730 К. График соответствует снижению температуры от $T = 1850 \,\mathrm{K}$, по оси ординат отложены равновесные значения І-. Видно несколько характерных участков на графике, соответствующих данным рис.1а. Участок "а-b" отвечает практически чистой поверхности родия – редкий хемосорбированный углеродный "газ" не изменяет работу выхода металла $\varphi = 5.0$ эВ, а весь углерод находится в объеме в фазе твердого раствора.

На участке "b-c" резкий рост тока I^- соответствует двумерному фазовому переходу, при котором образуются островки графена, которые растут по площади при снижении температуры. Точка "c" на рис.2с соответствует образованию сплошной пленки графена, работа выхода которой $\varphi = 4.35$ эВ.

Участок "*c*-*d*" на рис.2с полностью коррелирует с "полочкой" "*c*-*d*" на рис.1а – работа выхода остается неизменной, а незначительное падение I^- объясняется просто уменьшением температуры в соответствии с формулой Ричардсона [33]. Однако если температуру в точке "*d*" понизить всего на $3 \div 5^{\circ}$, то наблюдается резкое, на 4 порядка (!), уменьшение термоэлектронной эмиссии. Это является следствием объемного фазового перехода, то есть связано с образованием многослойной пленки графита.

Работа выхода графита составляет $\varphi = 4.65 \, \mathrm{sB},$ она на $\Delta \varphi = 0.3$ эВ больше, чем для графена; однако это повышение способно объяснить падение термоэлектронного тока максимум в несколько раз, но никак не на 3÷4 порядка. Более важная причина состоит в том, что образовавшаяся многослойная пленка графита существенно меняет коэффициент черноты поверхности от $\varepsilon = 0.24$ для родия со слоем графена до $\varepsilon = 0.8$ для многослойного графита [34]. Это приводит к значительному повышению радиационного уноса тепла и, как следствие, к уменьшению яркостной температуры образца на $\Delta T \sim 300\,\mathrm{K}$ (!). Одновременно падает и истинная температура подложки, что и приводит к наблюдаемому резкому уменьшению тока I^- , а также одновременно к дополнительному выделению углерода на поверхность металла. По нашим оценкам, при толщине графитовой пленки ~ 40 ÷ 50 слоев излучательная способность системы стабилизируется и определяется только графитом. Если на участке "е-f" произвести пирометрирование ленты с учетом нового значения $\varepsilon = 0.8$, то можно построить график Ричардсона и определить работу выхода многослойной пленки графита, которая действительно оказалось равной $\varepsilon = 4.65$ эВ.

Если теперь повысить ток накала ленты, то на графике $\lg I^- = f(T)$ наблюдается Гистерезис-график "пойдет" по пунктирной линии "*e-b*", поскольку при той же продукции тепла его радиационный унос значительно выше за счет наличия на поверхности многослойной графитовой пленки. При этом истинная температура в точке "*e*" на несколько сотен градусов ниже, чем была бы, если бы на поверхности присутствовал лишь один слой графена. В какой-то момент дальнейший нагрев разрушает графитовый слой, углерод растворяется в объеме родия, и систе-

ма полностью восстанавливается (см. участок "*b*-*a*" на рис.2с).

Таким образом, система родий – углерод оказалась очень удобной для исследования объемного фазового перехода с образованием слоя графита, что связано с заметной предельной растворимостью углерода в родии и большой подвижностью атомов углерода в объеме металла при средних температурах $T = 1000 \div 1500 \, {\rm K}$. Удалось экспериментально разделить фазовый переход, приводящий к образованию первого слоя графена на поверхности, и переход графен – графит, приводящий к росту многослойной графитовой пленки. Оба перехода обратимы и в сверхвысоковакуумных условиях могут быть многократно воспроизведены. Аналогичные фазовые переходы наблюдались также на поверхности рения и никеля.

Работа выполнена при поддержке Программы Президиума РАН "Квантовая физика конденсированных сред", проект 10.15.

- 1. A. Ya. Tontegode, Progress in Surf. Sci. 38, 201 (1991).
- N.R. Gall, E. V. Rut'kov, and A. Ya. Tontegode, Inter. Journal of Modern Physics B 11, 1865 (1997).
- E. V. Rut'kov and A. Ya. Tontegode, Surf. Sci. 161, 373 (1985).
- M. Eizenberg and J. M. Blakely, Surf. Sci. 82, 228 (1979).
- Hu Zi-Pu, D. F. Ogletree, M. A. Van-Hove, and G. A. Somorjai, Surf. Sci. 180, 433 (1987).
- 6. A.R. Ubbelohde and F.A. Lewis, Graphite and its Crystal compounds, Oxford, Clarendon Press, 1960.
- 7. A.R. Ubellohde, Proc. Roy. Soc. A 327, 289 (1972).
- M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30, 139 (1981).
- 9. E. Fromm and E. Gebhardt, Gase und Kohlenstoff in Metallen, Springer-Verlag, Berlin, 1976.
- H. P. Boehm, R. Setton, and E. Stumpp, Pure and Appl. Chem. 66, 1894 (1994).
- Eduardo V. Castro, K.S. Novoselov, S.V. Morozov et al., J. Physics: Condensed Matter 22, 175503 (2010).
- 12. K.S. Novoselov, ECS Transactions 19(5), 3 (2009).
- A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007).
- С. В. Морозов, К. С. Новоселов, А. К. Гейм, УФН 178, 776 (2008).
- K. S. Novoselov, D. Jiang, F. Schedin et al., PNAS 102, 10451 (2005).
- A. H. Castro Neto, F. Guinea, N. M. R. Peres et al., Reviews of Modern Physics 81, 109 (2009).
- 17. K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin et al., Physica Status Solidi B **244**, 4106 (2007).

- K. S. Novoselov, P. Blake, and M.I. Katsnelson, Graphene: Electronic Properties, Encyclopedia of Materials: Science and Technology, Elsevier Ltd, 2008, p.1-6.
- 19. Е.В. Рутьков, А.Я. Тонтегоде, ФТТ 29, 1306 (1987).
- 20. E.Y. Gillet, Less-Common. Met. 71, 277 (1980).
- G. Panzner and W. Piekmann, Surf. Sci. 160, 253 (1985).
- Z. Waqar, I. V. Makarenko, A. N. Titkov et al., J. of Material Research (JMR) 19, 1058 (2004).
- 23. И.В. Макаренко, А.Н. Титков, Е.В. Рутьков, Н.Р. Галль, Известия РАН, сер. физ. **71**, 57 (2007).
- 24. А.Я. Тонтегоде, Е.В. Рутьков, УФН 163, 57 (1993).
- В. Н. Агеев, А. Я. Тонтегоде, Е. В. Рутьков, Н. А. Холин, ФТТ 23, 2248 (1981).
- N. R. Gall, S. N. Mikhailov, E. V. Rut'kov, and A. Ya. Tontegode, Surf. Sci. 191, 185 (1987).

- 27. Е.В. Рутьков, А.Я. Тонтегоде, М.М. Усуфов, Н.Р. Галль, ЖТФ **62**, 148 (1992).
- Е. В. Рутьков, А. В. Кузьмичев, Н. Р. Галль, Международный симпозиум Физика низкоразмерных систем (LDS 2), 2010, с. 153.
- Е. В. Рутьков, А. Я. Тонтегоде, Ю. С. Грушко, Письма в ЖЭТФ 57, 712 (1993).
- Е.В. Рутьков, А.В. Кузьмичев, Н.Р. Галль, ФТТ № 11 (2011), в печати.
- Н.Р. Галль, Н.П. Лавровская, Е.В. Рутьков, А.Я. Тонтегоде, ЖТФ 74, 105 (2004).
- 32. Г.В. Самсонов, И.М. Винницкий, *Тугоплавкие соеди*нения, М.: Металлургия, 1976.
- Л. Н. Добрецов, М. В. Гомоюнова, Эмиссионная электроника, М.: Наука, 1966.
- 34. Л.З. Криксунов, Справочник по основам инфракрасной техники, М.: Советское Радио, 1978.